201 # **TUTORIAL** If you tell me what you look at, I could tell you where you are by Dr. Myriam Servières (École Centrale de Nantes) # If you tell me what you look at, I could tell you where you are Some state of the art pose estimation methods in computer vision Myriam Servières École Centrale Nantes, AAU-CRENAU, IRSTV École Centrale Nantes, AAU-CRENAU, IRSTV Nantes - 24 september 2018 #### **Definitions** #### Camera pose Camera position and orientation relative to a fixed coordinate system #### Computer Vision (CV) Interdisciplinary field that study and develop techniques to enable a computer system or artificial intelligence system to analyze and understand visual data obtained using cameras. Computer vision tasks include methods for acquiring, processing, analyzing and understanding digital images. #### Camera Pose # Why do we need the pose for? • Retrieving information from image work from [ASR17] - Knowing a displacement only from a video - Augmented Reality - Reconstructing a 3D model - . . . # Why do we need the pose for? - Retrieving information from image - Knowing a displacement only from a video work from [ASR18] - Augmented Reality - Reconstructing a 3D model ... # Why do we need the pose for? - Retrieving information from image - Knowing a displacement only from a video - Augmented Reality - Reconstructing a 3D model 3D model reconstructed with COLMAP with an example dataset [SF16, SZPF16] # Why do we need the pose for? - Retrieving information from image - Knowing a displacement only from a video - Augmented Reality work from [ASR17] - Reconstructing a 3D model - | Myriam Servières (ECN - AAU/CRENAU) | Pose estimation tutorial | IPIN 2018 | 5 / 181 #### Outline - Camera model and calibration - 2 Some pose estimation algorithms with a known 3D model - Transformation between images - Motion estimation - Conclusion #### Outline - Camera model and calibration - Pinhole Camera Model - Calibration parameters - Calibration methods - References, tools and demo - 2 Some pose estimation algorithms with a known 3D model - Transformation between images - Motion estimation - Conclusion - 6 Links and bibliography #### Pinhole Camera Model Myriam Servières (ECN - AAU/CRENAU) #### Outline - Camera model and calibration - Pinhole Camera Model - Calibration parameters - Calibration methods - References, tools and demo - 2 Some pose estimation algorithms with a known 3D model - Transformation between images - 4 Motion estimation - 5 Conclusion - 6 Links and bibliography Myriam Servières (ECN - AAU/CRENAU) Pose Pose estimation tutori #### Pinhole Camera Model #### Pinhole Camera Model #### Pinhole Camera Model #### Pinhole Camera Model | イロトイラトイミト | 茎 少 Q C Myriam Servières (ECN - AAU/CRENAU) | Pose estimation tutorial | IPIN 2018 | 9 / 181 # Pinhole Camera Model #### Pinhole Camera Model ←□ ト ←□ ト ← 亘 ト ← 亘 ・ り へ ○ Myriam Servières (ECN - AAU/CRENAU) #### Pinhole Camera Model #### Pinhole Camera Model Myriam Servières (ECN - AAU/CRENAU) #### Pinhole Camera Model #### Pinhole Camera Model - Model of the camera's geometry - Distortion model of the lens ◆ロト ◆雨 ◆ モト ◆ ヨ ◆ のQ ○ Myriam Servières (ECN - AAU/CRENAU) Lens distortions Calibration methods • References, tools and demo Camera model and calibration Pinhole Camera Model Calibration parameters > Link between imaged point and point on image Transformations using homogeneous coordinates Extrinsic parameters Camera matrix Outline - 2 Some pose estimation - Motion estimation - 6 Links and bibliography Myriam Servières (ECN - AAU/CRENAU) #### Outline - Camera model and calibration - Pinhole Camera Model - Calibration parameters - Link between imaged point and point on image - Transformations using - Extrinsic parameters - Camera matrix - Lens distortions - Calibration methods - References, tools and demo - 2 Some pose estimation - 6 Links and bibliography # Link between imaged point and point on image Perspective projection # Link between imaged point and point on image x_i, y_i, x_c, y_c and z_c are measured in the same real-world units (e.g. mm) Myriam Servières (ECN - AAU/CRENAU) Pose estimation tutorial IPIN 2018 14/181 # Focal length and photoreceptor spacing #### Focal length and photoreceptor spacing #### Camera field of view Total angular range that is imaged (usually different in the x- and y-directions) | イロトイラトイミト ミータ (でMyriam Servières (ECN - AAU/CRENAU) | Pose estimation tutorial | IPIN 2018 | 15 / 181 # Unit in pixel on the image #### Rectangular pixels - two different focal lengths : f_x and f_y - $f_x = f.s_x$ and $f_y = f.s_y$ with - f the physical focal length in the chosen real-world unit (e.g. mm) - s_x (resp. s_y) the size of the individual imager elements along x (resp. y) in px/chosen real-world unit (e.g. px/mm) - ullet Only f_x and f_y can be derived by the calibration process $$u = f_{x} \frac{x_{c}}{z_{c}}$$ $$v = f_y \frac{y_c}{z_c}$$ # Representation in homogeneous coordinates - $X_c = [x_c, y_c, z_c]^T$ correspond to $\mathbf{x}_{i_{\text{niv}}} = [u, v]^T = [f_x \frac{x_c}{z}, f_v \frac{y_c}{z}]^T$ - non-linear operation $(/z_c) \rightarrow$ perspective projection - Use homogeneous coordinates to get a linear form (add one dimension). $$\begin{bmatrix} u \\ v \end{bmatrix} \to \begin{bmatrix} u \\ v \\ 1 \end{bmatrix} \text{ and } \begin{bmatrix} x_c \\ y_c \\ z_c \end{bmatrix} \to \begin{bmatrix} x_c \\ y_c \\ z_c \\ 1 \end{bmatrix}$$ conversion from homogeneous coordinates $$\begin{bmatrix} u \\ v \\ w \end{bmatrix} \rightarrow \begin{bmatrix} u/w \\ v/w \end{bmatrix} \text{ and } \begin{bmatrix} x \\ y \\ z \\ w \end{bmatrix} \rightarrow \begin{bmatrix} x/w \\ y/w \\ z/w \end{bmatrix}$$ Myriam Servières (ECN - AAU/CRENAU) Pose estimation tutorial # Offset and skew parameters - Principal point p is not at $[0,0]^T$ in \mathcal{F}_i - Point $[0,0]^T$ is at upper-left corner and $p = [u_0, v_0]^T$ $$u=f_{x}\frac{x_{c}}{z_{c}}+u_{0}$$ $$v = f_y \frac{y_c}{z_c} + v_0$$ • Pixels may have a skew factor s $$u = f_x \frac{x_c + s.y_c}{z_c} + u_0$$ $$v=f_{y}\frac{y_{c}}{z_{c}}+v_{0}$$ #### Representation in homogeneous coordinates Using homogeneous coordinates $$\begin{bmatrix} u \\ v \end{bmatrix} = \begin{bmatrix} f_x \frac{x_c}{z_c} \\ f_y \frac{y_c}{z_c} \end{bmatrix}$$ can be expressed in a matrix form $$\begin{bmatrix} u \\ v \\ 1 \end{bmatrix} = \frac{1}{z_c} \begin{bmatrix} f_x & 0 & 0 \\ 0 & f_y & 0 \\ 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} x_c \\ y_c \\ z_c \end{bmatrix} \text{ or } \lambda \begin{bmatrix} u \\ v \\ 1 \end{bmatrix} = \begin{bmatrix} f_x & 0 & 0 \\ 0 & f_y & 0 \\ 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} x_c \\ y_c \\ z_c \end{bmatrix}$$ with λ a scale factor # Offset and skew parameters • Full pinhole camera model in a matrix form $$\lambda \begin{bmatrix} u \\ v \\ 1 \end{bmatrix} = \begin{bmatrix} f_x & s & u_0 \\ 0 & f_y & v_0 \\ 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} x_c \\ y_c \\ z_c \end{bmatrix}$$ (linear!) # Intrinsic parameters matrix $$\mathbf{K} = egin{bmatrix} f_x & s & u_0 \ 0 & f_y & v_0 \ 0 & 0 & 1 \end{bmatrix}$$ 4 D > 4 B > 4 B > 4 B > 9 Q P #### Outline - Camera model and calibration - Pinhole Camera Model - Calibration parameters - Link between imaged point - Transformations using homogeneous coordinates - Extrinsic parameters - Camera matrix - Lens distortions - Calibration methods - References, tools and demo 6 Links and bibliography - 2 Some pose estimation - Motion estimation - 5 Conclusion Myriam Servières (ECN - AAU/CRENAU) #### 2D translation Myriam Servières (ECN - AAU/CRENAU) $$P = [x, y]^T \rightarrow [x, y, 1]^T$$ $$t = [t_x, t_y]^T \rightarrow [t_x, t_y, 1]^T$$ $$P' = \begin{bmatrix} x + t_x \\ y + t_y \\ 1 \end{bmatrix} = \begin{bmatrix} 1 & 0 & t_x \\ 0 & 1 & t_y \\ 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} x \\ y \\ 1 \end{bmatrix}$$ $$P' = \begin{bmatrix} \mathbf{I} & \mathbf{t} \\ 0 & 1 \end{bmatrix}$$ $$P = \mathbf{T}.P$$ 2 D.o.F # 2D scale change $$P = [x, y]^{T} \to [x, y, 1]^{T} P' = [s_{x}.x, s_{y}.y]^{T} \to [s_{x}.x, s_{y}.y, 1]^{T}$$ $$P' = \begin{bmatrix} s_x \cdot x \\ s_y \cdot y \\ 1 \end{bmatrix} = \begin{bmatrix} s_x & 0 & 0 \\ 0 & s_y & 0 \\ 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} x \\ y \\ 1 \end{bmatrix}$$ $$P' = \begin{bmatrix} \mathbf{s} & 0 \\ 0 & 1 \end{bmatrix} P = \mathbf{S}.P$$ # 2D scale change and translation $$P'' = T.P' = T.S.P$$ note: $$\mathbf{T}.\mathbf{S}.P \neq \mathbf{S}.\mathbf{T}.P$$ $$\mathbf{T}.\mathbf{S}.P = \begin{bmatrix} s_x.x + t_x \\ s_y.y + t_y \\ 1 \end{bmatrix} \text{ and }$$ $$\mathbf{S}.\mathbf{T}.P = \begin{bmatrix} s_x.x + s_x.t_x \\ s_y.y + s_y.t_y \\ 1 \end{bmatrix}$$ 4 D > 4 B > 4 B > B 9 9 0 Myriam Servières (ECN - AAU/CRENAU) 2D rotation $$P' = \begin{bmatrix} \cos \theta & -\sin \theta & 0 \\ \sin \theta & \cos \theta & 0 \\ 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} x \\ y \\ 1 \end{bmatrix}$$ 1 D.o.F. ◆ロト ◆園 ト ◆恵 ト ・ 車 ・ 釣 へ ○ # 2D similarity • Similarity = scale (with $s_x = s_y$)+ rotation + translation $$P' = \begin{bmatrix} 1 & 0 & t_x \\ 0 & 1 & t_y \\ 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} \cos \theta & -\sin \theta & 0 \\ \sin \theta & \cos \theta & 0 \\ 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} s & 0 & 0 \\ 0 & s & 0 \\ 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} x \\ y \\ 1 \end{bmatrix}$$ $$P' = \begin{bmatrix} \mathbf{RS} & \mathbf{t} \\ 0 & 1 \end{bmatrix} \begin{bmatrix} x \\ y \\ 1 \end{bmatrix}$$ # 2D transformation summary Extracted from [Sze10]. # 2D transformation summary | type | D.o.F. | matrix | transformed
square | invariants | |------------|--------|--|-----------------------|--| | Euclidean | 3 | $\begin{bmatrix} r_{11} & r_{12} & t_x \\ r_{21} & r_{22} & t_y \\ 0 & 0 & 1 \end{bmatrix}$ | | lengths, angles, parallelism, straight lines | | Similarity | 4 | $\begin{bmatrix} s.r_{11} & s.r_{12} & t_x \\
s.r_{21} & s.r_{22} & t_y \\ 0 & 0 & 1 \end{bmatrix}$ | | angles, parallelism, straight lines | | Affine | 6 | $\begin{bmatrix} a_{11} & a_{12} & t_x \\ a_{21} & a_{22} & t_y \\ 0 & 0 & 1 \end{bmatrix}$ | | parallelism, straight lines | | Projective | 8 | $\begin{bmatrix} h_{11} & h_{12} & h_{13} \\ h_{21} & h_{22} & h_{23} \\ h_{31} & h_{32} & h_{33} \end{bmatrix}$ | | straight lines | Adapted from [Sze10, HZ04] Myriam Servières (ECN - AAU/CRENAU) Pose estimation tutorial IPIN 2018 28 / 18 #### 3D rotation Counter-clockwise rotation around coordinate axes #### 3D translation Myriam Servières (ECN - AAU/CRENAU) Pose estimation tutorial IPIN 2018 29 / 181 #### 3D rotation Counter-clockwise rotation around coordinate axes #### 3D rotation #### Counter-clockwise rotation around coordinate axes $$R_{x}(\alpha) = \begin{bmatrix} 1 & 0 & 0 \\ 0 & \cos \alpha & -\sin \alpha \\ 0 & \sin \alpha & \cos \alpha \end{bmatrix}$$ $$R_{y}(\beta) = \begin{bmatrix} \cos \beta & 0 & \sin \beta \\ 0 & 1 & 0 \\ -\sin \beta & 0 & \cos \beta \end{bmatrix}$$ $$R_z(\gamma) = \begin{bmatrix} \cos \gamma & -\sin \gamma & 0\\ \sin \gamma & \cos \gamma & 0\\ 0 & 0 & 1 \end{bmatrix}$$ 4 D > 4 B > 4 B > 4 B > 9 Q P Myriam Servières (ECN - AAU/CRENAU) 3D rotation $$P' = egin{bmatrix} \mathbf{R} & \mathbf{0} \\ \mathbf{0} & \mathbf{1} \end{bmatrix}_{4 \times 4} egin{bmatrix} x \\ y \\ z \\ 1 \end{bmatrix} \text{ with } \mathbf{R} = R_z(\gamma)R_y(\beta)R_x(\alpha) \text{ or }$$ $$\mathbf{R} = \begin{bmatrix} \cos\beta\cos\gamma & \sin\alpha\sin\beta\cos\gamma - \cos\alpha\sin\gamma & \cos\alpha\sin\beta\cos\gamma + \sin\alpha\sin\gamma \\ \cos\beta\sin\gamma & \sin\alpha\sin\beta\sin\gamma + \cos\alpha\cos\gamma & \cos\alpha\sin\beta\sin\gamma - \sin\alpha\cos\gamma \\ -\sin\beta & \sin\alpha\cos\beta & \cos\alpha\cos\beta \end{bmatrix}$$ Simplified notation : $$\mathbf{R} = \begin{bmatrix} r_{11} & r_{12} & r_{13} \\ r_{21} & r_{22} & r_{23} \\ r_{31} & r_{32} & r_{33} \end{bmatrix}$$ Reminder : $R^T R = RR^T = I$ lyriam Servières (ECN - AAU/CRENAU) # 3D transformation summary | | | | , c 1 | | | |------------|--------|--|---------------------|--|--| | type | D.o.F. | matrix | transformed
cube | invariants | | | Euclidean | 6 | $\begin{bmatrix} r_{11} & r_{12} & r_{13} & t_x \\ r_{21} & r_{22} & r_{23} & t_y \\ r_{31} & r_{32} & r_{33} & t_z \\ 0 & 0 & 0 & 1 \end{bmatrix}$ | | lengths, angles, parallelism, straight lines | | | Similarity | 7 | $\begin{bmatrix} s.r_{11} & s.r_{12} & s.r_{13} & t_x \\ s.r_{21} & s.r_{22} & s.r_{23} & t_y \\ s.r_{31} & s.r_{32} & s.r_{33} & t_z \\ 0 & 0 & 0 & 1 \end{bmatrix}$ | | angles, parallelism, straight lines | | | Affine | 12 | $\begin{bmatrix} a_{11} & a_{12} & a_{13} & t_x \\ a_{21} & a_{22} & a_{23} & t_y \\ a_{31} & a_{32} & a_{33} & t_z \\ 0 & 0 & 0 & 1 \end{bmatrix}$ | | parallelism, straight lines | | | Projective | 15 | $\begin{bmatrix} h_{11} & h_{12} & h_{13} & h_{14} \\ h_{21} & h_{22} & h_{23} & h_{24} \\ h_{31} & h_{32} & h_{33} & h_{34} \\ h_{41} & h_{42} & h_{43} & h_{44} \end{bmatrix}$ | | straight lines | | Adapted from [Sze10, HZ04] #### Outline - Camera model and calibration - Pinhole Camera Model - Calibration parameters - Link between imaged point - Transformations using - Extrinsic parameters - Camera matrix - Lens distortions - Calibration methods - References, tools and demo - 2 Some pose estimation - Conclusion - 6 Links and bibliography #### Extrinsic parameters #### What we want: Myriam Servières (ECN - AAU/CRENAU) 4□ > 4酉 > 4 亘 > 4 亘 > □ ● 9 Q ○ # Extrinsic parameters #### What we have: Myriam Servières (ECN - AAU/CRENAU) 4□ > 4□ > 4□ > 4□ > 4□ > 4□ # Extrinsic parameters #### What is missing: Position and orientation of the camera frame \mathcal{F}_c in the world frame \mathcal{F}_w . # Extrinsic parameters #### What is missing: Position and orientation of the camera frame \mathcal{F}_c in the world frame \mathcal{F}_w . $$\begin{bmatrix} x_c \\ y_c \\ z_c \\ 1 \end{bmatrix} = \begin{bmatrix} r_{11} & r_{12} & r_{13} & t_x \\ r_{21} & r_{22} & r_{23} & t_y \\ r_{31} & r_{32} & r_{33} & t_z \\ 0 & 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} x_w \\ y_w \\ z_w \\ 1 \end{bmatrix}$$ #### Extrinsic parameters What is missing: Position and orientation of the camera frame \mathcal{F}_c in the world frame \mathcal{F}_{w} . $$\begin{bmatrix} x_c \\ y_c \\ z_c \\ 1 \end{bmatrix} = \begin{bmatrix} \mathbf{R} & \mathbf{t} \\ 0 & 1 \end{bmatrix} \begin{bmatrix} x_w \\ y_w \\ z_w \\ 1 \end{bmatrix} \text{ with } \begin{bmatrix} \mathbf{R} & \mathbf{t} \\ 0 & 1 \end{bmatrix} \text{ extrinsic parameters matrix.}$$ Myriam Servières (ECN - AAU/CRENAU) #### Outline #### Camera model and calibration - Pinhole Camera Model - Calibration parameters - Link between imaged point - Transformations using - Extrinsic parameters - Camera matrix - Lens distortions - Calibration methods - References, tools and demo [6] Links and bibliography - 2 Some pose estimation algorithms with a known 3D Myriam Servières (ECN - AAU/CRENAU) 4日 1 4日 1 4日 1 日 1 9 Q Q Q #### Camera matrix Finally we get: $$\lambda \begin{bmatrix} u \\ v \\ 1 \end{bmatrix} = \mathbf{K} \begin{bmatrix} \mathbf{I}_{3\times3} & 0 \end{bmatrix} \begin{bmatrix} \mathbf{R} & \mathbf{t} \\ 0 & 1 \end{bmatrix} \begin{bmatrix} x_w \\ y_w \\ z_w \\ 1 \end{bmatrix}$$ #### Camera matrix All the 3D points on the same line passing through \mathbf{x}_i have the same image point. #### Camera matrix $\lambda \begin{bmatrix} u \\ v \\ 1 \end{bmatrix} = \mathbf{K} \begin{bmatrix} \mathbf{I}_{3 \times 3} & 0 \end{bmatrix} \begin{bmatrix} \mathbf{R} & \mathbf{t} \\ 0 & 1 \end{bmatrix} \begin{bmatrix} x_w \\ y_w \\ z_w \\ 1 \end{bmatrix}$ - λ is a scale factor. - $\bullet \ \ \textbf{P} = \textbf{K} \begin{bmatrix} \textbf{I}_{3\times3} & 0 \end{bmatrix} \begin{bmatrix} \textbf{R} & \textbf{t} \\ 0 & 1 \end{bmatrix} = \textbf{K} [\textbf{R}|\textbf{t}] \ \text{is the camera matrix}.$ - K 5 D.o.F. and R 3 D.o.F. . t 3 D.o.F. \Rightarrow 11 D.o.F. in total (+1 for the scale) 4□ > 4周 > 4 = > 4 = > = 40 Myriam Servières (ECN - AAU/CRENAU) #### Lens distortions - Real-world cameras are not. pinhole: use of lenses - Lenses introduce distortions: - Radial distortions - ► Tangential distortions - Camera model and calibration - Pinhole Camera Model - Calibration parameters - Link between imaged point - Transformations using - Extrinsic parameters - Camera matrix - Lens distortions - Calibration methods - References, tools and demo - 2 Some pose estimation - Motion estimation - 6 Links and bibliography Myriam Servières (ECN - AAU/CRENAU) 4□ > 4□ > 4□ > 4□ > 4□ > 900 #### Lens distortions - Radial distortion No distortion "barrel" $$x_{final} = x(1 + k_1 * r^2 + k_2 * r^4 + k_3 * r^6)$$ $y_{final} = y(1 + k_1 * r^2 + k_2 * r^4 + k_3 * r^6)$ with k_1, k_2, k_3 distortion coefficients and r distance to optical center Note: This distortion is implemented after perspective projection but before the effect of the intrinsic parameters so the warping is relative to the optical axis and not the origin of the pixel coordinate system. # Lens distortions - Tangential distortions $$x_{final} = x + [2p_1y + p_2(r^2 + 2x^2)]$$ $y_{final} = y + [p_1(r^2 + 2y^2) + 2p_2x]$ with p_1, p_2 tangential distortion parameters. ◆ロト ◆雨 ◆ モト ◆ ヨ ◆ のQ ○ Myriam Servières (ECN - AAU/CRENAU) lyriam Servières (ECN - AAU/CRENAU) # Outline - Camera model and calibration - Pinhole Camera Model - Calibration parameters - Calibration methods - Principle - A linear method: Direct - From P to K, R and t - Non linear approach principle - "Gold standard" algorithm - References, tools and demo - Some pose estimation #### Outline - Camera model and calibration - Pinhole Camera Model - Calibration parameters - Calibration methods - Principle - A linear method: Direct Linear Transform (DLT) - From P to K, R and t - Non linear approach principle - "Gold standard" algorithm - References, tools and demo - 2 Some pose estimation - Conclusion - 6 Links and bibliography # Linear approach principle Knowing 3D points X_{w_i} and their corresponding points in the image *P-n-P*: Perspective-*n*-point - Estimate P - Extract K, R and t from P # Linear approach principle How many corresponding points are needed? - $\mathbf{P} = \mathbf{K} \begin{bmatrix} \mathbf{I}_{3\times3} & 0 \\ 0 & 0 \end{bmatrix} \begin{bmatrix} \mathbf{R} & \mathbf{t} \\ 0 & 1 \end{bmatrix}$ as 12 entries and 11 D.o.F. (ignoring the scale - each correspondence point leads to 2 eq. \Rightarrow 5 correspondences + 1 eg. are needed: 6 correspondence points 4 T > 4 A > 4 B > 4 B > B 900 Myriam Servières (ECN - AAU/CRENAU) Pose estimation tutorial # Outline - Camera model and calibration - Pinhole Camera Model - Calibration parameters - Calibration methods - Principle Myriam Servières (ECN - AAU/CRENAU) - A linear method: Direct Linear Transform (DLT) - From P to K, R and t - Non linear approach principle - "Gold standard" algorithm - References, tools and demo - Some pose estimation - Conclusion # Direct Linear Transform: $\mathbf{x}_i \leftrightarrow X_{w}$ - Considering $\mathbf{P}_{3\times 4}$ and $\mathbf{x}_i = \begin{bmatrix} x_i \\ y_i \\ z_i \end{bmatrix}$ a point in the image corresponding to a 3D point $X_w = \begin{bmatrix} x_w \\ y_w \\ z_w \\ 1 \end{bmatrix}$ - $\mathbf{x}_i = \mathbf{P} X_w$ for all corresponding points - We have the linear relationship: $$\mathbf{x}_i \times \mathbf{P} X_w = 0$$ (with \times cross product) ◆ロト ◆園 ト ◆ 恵 ト ◆ 恵 ・ 夕 ○ ○ vriam Servières (ECN - AAU/CRENAU) # Direct Linear Transform: $\mathbf{x}_i \times \mathbf{P} X_w = 0$ - writing $\mathbf{P} = \begin{bmatrix} P_1 \\ P_2 \\ P_3 \end{bmatrix}$ with P_i a 4-vector of the i-th row of \mathbf{P} - then
$\mathbf{P}X_w = \begin{bmatrix} P_1^T \cdot X_w \\ P_2^T \cdot X_w \\ P_3^T \cdot X_w \end{bmatrix}$ - and $\mathbf{x}_i \times \mathbf{P}X_w = \begin{bmatrix} x_i \\ y_i \\ z_i \end{bmatrix} \times \begin{bmatrix} P_1^T \cdot X_w \\ P_2^T \cdot X_w \\ P_3^T \cdot X_w \end{bmatrix}$ # Direct Linear Transform: $\mathbf{x}_i \times \mathbf{P} X_w = 0$ - $\mathbf{x}_i \times \mathbf{P} X_w = 0$ - Developing it: $$\begin{bmatrix} x_i P_2^T X_w - y_i P_1^T X_w \\ -x_i P_3^T X_w + z_i P_1^T X_w \\ y_i P_3^T X_w - z_i P_2^T X_w \end{bmatrix} = 0$$ • As $$P_i^T X_w = X_w^T P_i$$: $$\begin{bmatrix} x_i X_w^T P_2 - y_i X_w^T P_1 \\ -x_i X_w^T P_3 + z_i X_w^T P_1 \\ y_i X_w^T P_3 - z_i X_w^T P_2 \end{bmatrix} = 0$$ • and writing in a matrix form: $$\begin{bmatrix} 0 & -z_i X_w^T & y_i X_w^T \\ z_i X_w^T & 0 & -x_i X_w^T \\ -y_i X_w^T & x_i X_w^T & 0 \end{bmatrix} \begin{bmatrix} P_1 \\ P_2 \\ P_3 \end{bmatrix} = 0$$ 4 m > vriam Servières (ECN - AAU/CRENAU) this will be written $A_i \mathbf{p} = 0$ with \mathbf{p} a 12-vector made up of the entries of \mathbf{P} . Choosing $z_i = 1$, then $\begin{bmatrix} x_i \\ y_i \end{bmatrix}$ are coordinate on the image • note: The eq. hold for any homogeneous representation of \mathbf{x}_i . 4 T > 4 A > 4 B > 4 B > B = 400 # Direct Linear Transform: determination of P Direct Linear Transform: determination of P • the 3 rows are linearly dependent • So we choose only the 2 first ones $\begin{bmatrix} 0 & -z_i X_w^T & y_i X_w^T \\ z_i X_w^T & 0 & -x_i X_w^T \\ -y_i X_w^T & x_i X_w^T & 0 \end{bmatrix} \begin{bmatrix} P_1 \\ P_2 \\ P_3 \end{bmatrix} = 0$ $\begin{bmatrix} 0 & -z_i X_w^T & y_i X_w^T \\ z_i X_w^T & 0 & -x_i X_w^T \end{bmatrix} \begin{bmatrix} P_1 \\ P_2 \\ P_2 \end{bmatrix} = 0$ - Minimal solution Given 6 correspondences, the solution is exact. The solution is obtained solving $A\mathbf{p} = 0$ where A is 11×12 . In general A will have rank 11, and the solution vector \mathbf{p} is the 1-dimensional right null-space of A. - Over-determined solution If data are not exact (noise) and $n \ge 6 \rightarrow$ not an exact solution to $A\mathbf{b} = 0$. Then the estimation of **P** may be obtained by minimizing an algebraic error with the normalization constraint $||\mathbf{p}|| = 1$ [From [HZ04]]. #### Direct Linear Transform: determination of P - Staking all eq. for each correspondence point leads to: $A\mathbf{p} = 0$ with A matrix of eq. coefficients built from the matrix rows A_i and \mathbf{p} and 12-vector made up of the entries of the matrix P - Obtain the SVD of A. The unit singular vector corresponding to the smallest singular value is the solution of \mathbf{p} . Specifically, if $A = UDV^T$ with D diagonal with positive diagonal entries, arranged in descending order down the diagonal, then \mathbf{p} is the last column of V. - P is then given by p [DLT algorithm from [HZ04]]. #### DLT: points normalization - DLT is not invariant to similarity transformations (details in [HZ04]) - ⇒ apply a normalizing transformation to the data before applying the DLT algorithm - Normalization for 2D points: Isotropic scaling - points are translated so that their centroid is at the origin. - points are then scaled so that their root-mean-square distance from the origin is equal to $\sqrt{2}$ - Normalization for 3D points case with small variations in points depth - centroid of the points is translated to the origin - coordinates of the points are scaled so that their root-mean-square distance from the origin is $\sqrt{3}$ 4 D > 4 B > 4 B > 3 B 9 9 9 vriam Servières (ECN - AAU/CRENAU) # Direct Linear Transform complete algorithm [HZ04] #### Objective: $\overline{\text{Given } n >}$ 6 world to image point correspondences $X_w \leftrightarrow \mathbf{x}_i$, determine the camera projection matrix **P** such as $\mathbf{x}_i = \mathbf{P} X_w$ Algorithm - **1** Normalization of x_i : Compute a similarity transformation T - **2** Normalization of X_w : Compute a similarity transformation U, consisting of a translation and scaling, that takes points X_w to a new set of points \tilde{X}_w such that the centroid of the points \tilde{X}_w is the coordinate origin $[0,0,0]^T$, and their average distance from the origin is $\sqrt{3}$. # Direct Linear Transform complete algorithm [HZ04] #### Objective: Given $n \geq 6$ world to image point correspondences $X_w \leftrightarrow \mathbf{x}_i$, determine the camera projection matrix **P** such as $\mathbf{x}_i = \mathbf{P}X_w$ Algorithm **1** Normalization of x_i : Compute a similarity transformation T, consisting of a translation and scaling, that takes points \mathbf{x}_i to a new set of points $\tilde{\mathbf{x}}_i$ such that the centroid of the points $\tilde{\mathbf{x}}_i$ is the coordinate origin $[0,0]^T$, and their average distance from the origin is $\sqrt{2}$. イロト 4周ト 4 三ト 4 三ト 三 めのぐ vriam Servières (ECN - AAU/CRENAU) # Direct Linear Transform complete algorithm [HZ04] #### Objective: Given $n \ge 6$ world to image point correspondences $X_w \leftrightarrow \mathbf{x}_i$, determine the camera projection matrix **P** such as $\mathbf{x}_i = \mathbf{P} X_w$ Algorithm - **1** Normalization of x_i : Compute a similarity transformation T - **2** Normalization of X_w : Compute a similarity transformation U - ODLT: - For each correspondence $\tilde{X}_w \leftrightarrow \tilde{\mathbf{x}}_i$ compute the matrix A_i . Only the first two rows need be used in general. - **2** Form the $2n \times 12$ matrix A by stacking the equations generated by each correspondence $\tilde{X}_w \leftrightarrow \tilde{\mathbf{x}}_i$. - **3** Write **p** for the vector containing the entries of the matrix $\tilde{\mathbf{P}}$. A solution of $A\mathbf{p} = 0$, subject to ||p|| = 1, is obtained from the unit singular vector of A corresponding to the smallest singular value. # Direct Linear Transform complete algorithm [HZ04] #### Objective: $\overline{\text{Given } n >}$ 6 world to image point correspondences $X_{w} \leftrightarrow \mathbf{x}_{i}$, determine the camera projection matrix **P** such as $\mathbf{x}_i = \mathbf{P} X_w$ Algorithm - **1** Normalization of x_i : Compute a similarity transformation T - **2** Normalization of X_w : Compute a similarity transformation U - **3 DLT**: Compute **p** from A then get $\tilde{\mathbf{P}}$ - **Denormalization**. The camera matrix for the original (unnormalized) coordinates is obtained from $\tilde{\mathbf{P}}$ as: $$\mathbf{P} = T^{-1}\tilde{\mathbf{P}}U$$ Note: an implementation for leaning purposes can be found at http://people.rennes.inria.fr/Eric.Marchand/pose-estimation/tutorial-pose-dlt-opencv.html Myriam Servières (ECN - AAU/CRENAU) # Extraction of the extrinsic and intrinsic parameters Having **P**: $$\mathbf{P} = \mathbf{K} \begin{bmatrix} \mathbf{I}_{3 \times 3} & 0 \end{bmatrix} \begin{bmatrix} \mathbf{R} & \mathbf{t} \\ 0 & 1 \end{bmatrix}$$ We can write: $$\mathbf{P} = \begin{bmatrix} p_{11} & p_{12} & p_{13} & p_{14} \\ p_{21} & p_{22} & p_{23} & p_{24} \\ p_{31} & p_{32} & p_{33} & p_{34} \end{bmatrix} = \begin{bmatrix} f_x & s & u_0 \\ 0 & f_y & v_0 \\ 0 & 0 & 1 \end{bmatrix} \cdot \begin{bmatrix} r_{11} & r_{12} & r_{13} & t_1 \\ r_{21} & r_{22} & r_{23} & t_2 \\ r_{31} & r_{32} & r_{33} & t_3 \end{bmatrix}$$ #### Outline - Camera model and calibration - Pinhole Camera Model - Calibration parameters - Calibration methods - Principle - A linear method: Direct - From P to K. R and t - Non linear approach principle - "Gold standard" algorithm References, tools and demo 2 Some pose estimation - Motion estimation - Conclusion - 6 Links and bibliography vriam Servières (ECN - AAU/CRENAU) 4□ > 4個 > 4 種 > 4 種 > ■ 9 Q @ # Extraction of the extrinsic and intrinsic parameters $$\begin{bmatrix} p_{11} & p_{12} & p_{13} & p_{14} \\ p_{21} & p_{22} & p_{23} & p_{24} \\ p_{31} & p_{32} & p_{33} & p_{34} \end{bmatrix} = \\ \begin{bmatrix} f_x r_{11} + s
r_{21} + u_0 r_{31} & f_x r_{12} + s r_{22} + u_0 r_{32} & f_x r_{13} + s r_{23} + u_0 r_{33} & f_x t_1 + s t_2 + u_0 t_3 \\ f_y r_{21} + v_0 r_{31} & f_y r_{22} + v_0 r_{32} & f_y r_{23} + v_0 r_{33} & f_y t_2 + v_0 t_3 \\ r_{31} & r_{32} & r_{33} & t_3 \end{bmatrix}$$ leads to: • $$r_{3i} = \frac{p_{3i}}{||p_{3i}||}$$ for $i = 1, 2, 3$ • $$t_3 = p_{34}$$ #### Case s = 0: get intrinsic parameters $$\begin{bmatrix} f_x r_{11} + u_0 r_{31} & f_x r_{12} + u_0 r_{32} & f_x r_{13} + u_0 r_{33} & f_x t_1 + u_0 t_3 \\ f_y r_{21} + v_0 r_{31} & f_y r_{22} + v_0 r_{32} & f_y r_{23} + v_0 r_{33} & f_y t_2 + v_0 t_3 \\ r_{31} & r_{32} & r_{33} & t_3 \end{bmatrix}$$ $$u_0 = \begin{bmatrix} p_{11} \\ p_{12} \\ p_{13} \end{bmatrix} \cdot \begin{bmatrix} p_{31} \\ p_{32} \\ p_{33} \end{bmatrix}$$ $$f_{\mathsf{x}} = \left\| \begin{bmatrix} p_{11} \\ p_{12} \\ p_{13} \end{bmatrix} - u_0 \cdot \begin{bmatrix} p_{31} \\ p_{32} \\ p_{33} \end{bmatrix} \right\|$$ $$v_0 = \begin{bmatrix} p_{21} \\ p_{22} \\ p_{23} \end{bmatrix} \cdot \begin{bmatrix} p_{31} \\ p_{32} \\ p_{33} \end{bmatrix}$$ $$f_{y} = \left\| \begin{bmatrix} p_{21} \\ p_{22} \\ p_{23} \end{bmatrix} - v_{0} \cdot \begin{bmatrix} p_{31} \\ p_{32} \\ p_{33} \end{bmatrix} \right\|$$ [From [Mar13]] 4□ → 4回 → 4 亘 → 4 亘 → 9 0 0 ○ # Case $s \neq 0$ $$P = \begin{bmatrix} f_x r_{11} + s r_{21} + u_0 r_{31} & f_x r_{12} + s r_{22} + u_0 r_{32} & f_x r_{13} + s r_{23} + u_0 r_{33} & f_x t_1 + s t_2 + u_0 t_3 \\ f_y r_{21} + v_0 r_{31} & f_y r_{22} + v_0 r_{32} & f_y r_{23} + v_0 r_{33} & f_y t_2 + v_0 t_3 \\ r_{31} & r_{32} & r_{33} & t_3 \end{bmatrix}$$ $$u_0 = \begin{bmatrix} p_{11} \\ p_{12} \\ p_{13} \end{bmatrix} \cdot \begin{bmatrix} p_{31} \\ p_{32} \\ p_{33} \end{bmatrix}$$ $$f_{x} = \left\| \begin{bmatrix} p_{11} \\ p_{12} \\ p_{13} \end{bmatrix} - u_{0} \cdot \begin{bmatrix} p_{31} \\ p_{32} \\ p_{33} \end{bmatrix} \right\|$$ $$v_0 = \begin{bmatrix} p_{21} \\ p_{22} \\ p_{23} \end{bmatrix} \cdot \begin{bmatrix} p_{31} \\ p_{32} \\ p_{33} \end{bmatrix}$$ $$\begin{bmatrix} r_{21} \\ r_{22} \\ r_{23} \end{bmatrix} = \begin{bmatrix} \begin{bmatrix} p_{21} \\ p_{22} \\ p_{23} \end{bmatrix} - v_0 \cdot \begin{bmatrix} p_{31} \\ p_{32} \\ p_{33} \end{bmatrix} \end{bmatrix} \cdot \frac{1}{f_y}$$ and we still have r_3 and t_3 . [From [Mar13]] #### 4□ > 4個 > 4 種 > 4 種 > 種 の 9 ○ ○ $$\begin{bmatrix} f_x r_{11} + u_0 r_{31} & f_x r_{12} + u_0 r_{32} & f_x r_{13} + u_0 r_{33} & f_x t_1 + u_0 t_3 \\ f_y r_{21} + v_0 r_{31} & f_y r_{22} + v_0 r_{32} & f_y r_{23} + v_0 r_{33} & f_y t_2 + v_0 t_3 \\ r_{31} & r_{32} & r_{33} & t_3 \end{bmatrix}$$ $$\begin{bmatrix} r_{11} \\ r_{12} \\ r_{13} \end{bmatrix} = \begin{bmatrix} \begin{bmatrix} p_{11} \\ p_{12} \\ p_{13} \end{bmatrix} - u_0 \cdot \begin{bmatrix} p_{31} \\ p_{32} \\ p_{33} \end{bmatrix} \end{bmatrix} \cdot \frac{1}{f_x}$$ $$\begin{bmatrix} r_{21} \\ r_{22} \\ r_{23} \end{bmatrix} = \begin{bmatrix} \begin{bmatrix} p_{21} \\ p_{22} \\ p_{23} \end{bmatrix} - v_0 \cdot \begin{bmatrix} p_{31} \\ p_{32} \\ p_{33} \end{bmatrix} \end{bmatrix} \cdot \frac{1}{f_y}$$ $$t_1 = \frac{p_{14} - u_0 \cdot t_3}{f_{\scriptscriptstyle X}}$$ $$t_2 = \frac{p_{24} - v_0 \cdot t_3}{f_y}$$ Notes: we must ensure $||r_i|| = 1$ with r_i *i*-th column of R and we are not sure that $r_3 = r_1 \times r_2$ [From [Mar13]] # Case $s \neq 0$ $$P = \begin{bmatrix} f_x r_{11} + s r_{21} + u_0 r_{31} & f_x r_{12} + s r_{22} + u_0 r_{32} & f_x r_{13} + s r_{23} + u_0 r_{33} & f_x t_1 + s t_2 + u_0 t_3 \\ f_y r_{21} + v_0 r_{31} & f_y r_{22} + v_0 r_{32} & f_y r_{23} + v_0 r_{33} & f_y t_2 + v_0 t_3 \\ r_{31} & r_{32} & r_{33} & t_3 \end{bmatrix}$$ $$r_2 = \frac{r_2}{||r_2||}$$ $r_1 = r_2 \times r_3$ $$t_2 = \frac{p_{24} - v_0 \cdot t_3}{f_y}$$ $t_1 = \frac{p_{14} - u_0 \cdot t_3 - s \cdot t_2}{f_x}$ $\begin{bmatrix} f_x \\ s \end{bmatrix} = \begin{bmatrix} r_{11} & r_{21} \\ r_{12} & r_{22} \end{bmatrix}^{-1} \cdot \begin{bmatrix} p_{11} - u_0 r_{31} \\ p_{12} - u_0 r_{32} \end{bmatrix}$ #### Outline #### Camera model and calibration - Pinhole Camera Model - Calibration parameters - Calibration methods - Principle - A linear method: Direct - From P to K. R and t - Non linear approach principle - "Gold standard" algorithm - References, tools and demo - 2 Some pose estimation - Motion estimation - Conclusion - 6 Links and bibliography Myriam Servières (ECN - AAU/CRENAU) # Non linear approach principle Suppressing the scale factor, we can write: $$\begin{bmatrix} x_i \\ y_i \end{bmatrix} = \begin{bmatrix} f \frac{r_{11}x_w + r_{12}y_w + r_{13}z_w + t_1}{r_{31}x_w + r_{32}y_w + r_{33}z_w + t_2} \\ f \frac{r_{21}x_w + r_{22}y_w + r_{23}z_w + t_2}{r_{31}x_w + r_{32}y_w + r_{33}z_w + t_3} \end{bmatrix}$$ Expressing $\begin{vmatrix} x_i \\ y_i \end{vmatrix}$ in pixels coordinates: $$x_{i} = \frac{(u+e_{x}-u_{0})}{s_{x}} - d_{0_{x}}$$ $$y_{i} = \frac{(v+e_{y}-v_{0})}{s_{y}} - d_{0_{y}}$$ - e_x , e_y : measurement errors on x_i , y_i - s_x, s_y : imager size along x and y - d_{0_x}, d_{0_y} : distortions #### [From [Mar13]] #### Non linear approach principle Consider the projection of a 3D point $X_w = \begin{bmatrix} x_w \\ y_w \\ z_w \end{bmatrix}$ onto a 2D point $$\mathbf{x}_i = \begin{bmatrix} x_i \\ y_i \\ z_i \end{bmatrix}$$ with $z_i = f$ (the focal length): $$\begin{bmatrix} x_i \\ y_i \\ z_i \end{bmatrix} = \lambda_i \begin{bmatrix} \mathbf{R} \begin{bmatrix} x_w \\ y_w \\ z_w \end{bmatrix} + \mathbf{t} \end{bmatrix}$$ #### with: - R the rotation matrix - t the translation vector - λ_i a scale factor Myriam Servières (ECN - AAU/CRENAU) 4□ > 4個 > 4 種 > 4 種 > ■ 9 Q @ # Non linear approach principle $$\begin{bmatrix} x_i \\ y_i \end{bmatrix} = \begin{bmatrix} f \frac{r_{11}x_w + r_{12}y_w + r_{13}z_w + t_1}{r_{31}x_w + r_{22}y_w + r_{33}z_w + t_2} \\ f \frac{r_{21}x_w + r_{22}y_w + r_{23}z_w + t_2}{r_{31}x_w + r_{32}y_w + r_{33}z_w + t_3} \end{bmatrix} = \begin{bmatrix} \frac{(u + e_x - u_0)}{s_x} - d_{0_x} \\ \frac{(v + e_y - v_0)}{s_y} - d_{0_y} \end{bmatrix}$$ We can express: $$\begin{bmatrix} u + e_x \\ v + e_y \end{bmatrix} = \begin{bmatrix} P(\Phi) \\ Q(\Phi) \end{bmatrix}$$ with $\Phi = [u_0, v_0, k_1, k_2, k_3, p_1, p_2, f_x, f_y, t_1, t_2, t_3, \alpha, \beta, \gamma]^T$ a 15 parameters vector where $(\alpha, \beta, \gamma)^T$ parametrize the orientation. [From [Mar13]] #### Non linear approach principle Then: $$\begin{bmatrix} e_x \\ e_y \end{bmatrix} = \begin{bmatrix} P(\Phi) - u \\ Q(\Phi) - v \end{bmatrix} \Rightarrow V(\Phi) = \begin{bmatrix} e_x \\ e_y \end{bmatrix}$$ We must find Φ which minimizes the reprojection error S: • if 1 image and *n* correspondence points: $$S = \sum_{i=1}^{n} (e_{x_i}^2 + e_{y_i}^2)$$ • if *m* image and *n* correspondence points on each image: $$S = \sum_{j=1}^{m} \sum_{i=1}^{n} (e_{x_{ij}}^{2} + e_{y_{ij}}^{2})$$ [From [Mar13]] イロト イラト イヨト ヨー かなべ Myriam Servières (ECN - AAU/CRENAU) yriam Servières (ECN - AAU/CRENAU) # Non linear approach principle Then: $\begin{bmatrix} e_x \\ e_v \end{bmatrix} = \begin{bmatrix} P(\Phi) - u \\ Q(\Phi) - v \end{bmatrix} \Rightarrow V(\Phi) = \begin{bmatrix} e_x \\ e_v \end{bmatrix}$ We must find Φ which minimizes the reprojection error S: Note: An implementation for learning purposes of a pose estimation using Gauss-Newton can be found at http://people.rennes.inria.fr/Eric.Marchand/pose-estimation/tutorial-pose-gauss-newton-opencv.htm [From [Mar13]] #### Non linear approach principle Then: $$\begin{bmatrix} e_x \\ e_y \end{bmatrix} = \begin{bmatrix} P(\Phi) - u \\ Q(\Phi) - v \end{bmatrix} \Rightarrow V(\Phi) = \begin{bmatrix} e_x \\ e_y \end{bmatrix}$$ We must find Φ which minimizes the reprojection error S: - if 1 image and n correspondence points: $S = \sum_{i=1}^{n} (e_{x_i}^2 + e_{y_i}^2)$ - if *m* image and *n* correspondence points on each image: $S = \sum_{i=1}^{m} \sum_{i=1}^{n} (e_{x_{ii}}^2 + e_{y_{ij}}^2)$ #### Non-linear optimization problem! That can be solved using algorithm as Gauss-Newton or Levenberg-Marquardt. [From [Mar13]] イロト イラト イヨト ヨ めなべ #### Outline - Camera model and calibration - Pinhole Camera Model - Calibration parameters - Calibration methods - Principle - A linear method: Direct - From P to K, R and t - Non linear approach principle - "Gold standard" algorithm - References, tools and demo - Some pose estimation - Conclusion # "Gold standard" algorithm [HZ04] #### Objective Given n > 6 world to image point correspondences $X_w \leftrightarrow \mathbf{x}_i$. determine the Maximum Likehood estimated of the camera projection matrix **P**, i.e. the **P** which minimizes $\sum_i d(\mathbf{x}_i, \mathbf{P}X_w)$ $\sum_i d(\mathbf{x}_i, \mathbf{P}X_w)$ is the geometric error in the image. Minimizing geometric error require the use of iterative techniques (as Levenberg-Marquardt). If the measurement error are Gaussian then the solution of $$\min_{\mathbf{P}} \sum_{i} d(\mathbf{x}_{i}, \mathbf{P} X_{w})$$ is the Maximum Likelihood estimate under P. DLT solution (or a minimal solution) is used as a starting point for the iterative minimization. Myriam Servières (ECN - AAU/CRENAU) riam Servières (ECN - AAU/CRENAU) # 4日 → 4 日 → 4 目 → 1 目 り 9 ○ ○ # "Gold standard" algorithm [HZ04] #### Objective [From [HZ04] $\overline{\text{Given } n} > 6$ world to image point correspondences $X_w \leftrightarrow \mathbf{x}_i$, determine the Maximum Likehood estimated of the camera projection matrix **P**, i.e. the **P** which minimizes $\sum_i d(\mathbf{x}_i, \mathbf{P}X_w)$ - **1 Linear Solution** Compute an initial estimate of **P** using previous linear method. - 2 Minimize geometric error Using the linear estimate as a starting point minimize the geometric error $$\sum_{i} d(\tilde{\mathbf{x}}_{i}, \tilde{\mathbf{P}}\tilde{X}_{w})$$ over \tilde{P} , using an iterative algorithm such as Levenberg-Marquardt. **3 Denormalization** The camera matrix for the original (unnormalized) coordinates is obtained from $\tilde{\mathbf{P}}$ as $${f P}=T^{-1}
ilde{f P}U$$ (0) (3) (4) (5) (4) (5) (5) # "Gold standard" algorithm [HZ04] #### Objective Given n > 6 world to image point correspondences $X_w \leftrightarrow \mathbf{x}_i$ determine the Maximum Likehood estimated of the camera projection matrix **P**, i.e. the **P** which minimizes $\sum_i d(\mathbf{x}_i, \mathbf{P}X_w)$ - **1 Linear Solution** Compute an initial estimate of **P** using previous linear method. - **Normalization** Use a similarity transformation T to normalize the image points $\tilde{\mathbf{x}}_{ii} = T\mathbf{x}_i$, and a second similarity transformation U to normalize the space points $\tilde{X}_w = UX_w$ - Apply DLT algorithm - 2 Minimize geometric error Using the linear estimate as a starting point minimize the geometric error $$\sum_{i} d(\tilde{\mathbf{x}}_{i}, \tilde{\mathbf{P}} \tilde{X}_{w})$$ over \tilde{P} , using an iterative algorithm such as | Levenberg-Marquardt. | ∢. | → < = → | ₹ 990 | |--------------------------------------|--------------------------|-----------|--------------| | Myriam Servières (ECN - AAU/CRENAU) | Pose estimation tutorial | IPIN 2018 | 66 / 181 | #### Outline - Camera model and calibration - Pinhole Camera Model - Calibration parameters - Calibration methods - References, tools and demo - 2 Some pose estimation - Motion estimation - Conclusion - 6 Links and bibliography #### References Presented methods where proposed by Roberts [Rob63], Tsai [Tsa87], Lowe [Low85, Low91], Yuan [Yua89] and Zhang [Zha00] (among others). #### Calibration with a chessboard Myriam Servières (ECN - AAU/CRENAU) Myriam Servières (ECN - AAU/CRENAU) Any appropriately characterized object could be used as a calibration object \Rightarrow practically: use of regular pattern as a chessboard Rq.: The specific use of this calibration object and much of the calibration approach itself comes from [Zha00] and [SM99] Demo: openCV calibration example code https://github.com/opencv/opencv/blob/master/samples/cpp/calibration.cpp In the yml file, you will find the camera matrix $\begin{bmatrix} f_x,0,u_0,0,f_y,v_0,0,0,1 \end{bmatrix}$ and the distortion coefficients $[k_1,k_2,p_1,p_2,k_3]$ #### Tools - OpenCV https://opencv.org (Opensource) - OpenGV ► https://laurentkneip.github.io/opengv/index.html - ViSP https://visp.inria.fr (Opensource) - MATLAB Toolboxes https://fr.mathworks.com/solutions/image-video-processing.html or http://www.vision.caltech.edu/bouguetj/calib_doc/ - Omnidirectional Calibration Toolbox http://www.robots.ox.ac.uk/čmei/Toolbox.html#download Pose estimation for augmented reality: a hand-on survey [MUS16] codes and explanations • http://people.rennes.inria.fr/Eric.Marchand/pose-estimation/index.html Myriam Servières (ECN - AAU/CRENAU) Pose estimation tutorial IPIN 2018 69 / 181 # Summary on perspective projection # Summary on perspective projection 4□ > 4酉 > 4 亘 > 4 亘 > ■ 9 Q ○ Myriam Servières (ECN - AAU/CRENAU) # Summary on perspective projection # Summary on perspective projection 4□ > 4□ > 4□ > 4□ > 4□ > 4□ # Summary on perspective projection # Summary on perspective projection # Myriam Servières (ECN - AAU/CRENAU) Pose estimation tutorial IPI # Summary on perspective projection #### Outline - Camera model and calibration - Some pose estimation algorithms with a known 3D model - P3P - POS and POSIT [DD95] - EPnP algorithm [LFNP09] - \bullet Others EPnP algorithms - 3 Transformation between images - Motion estimation - Conclusion - 6 Links and bibliography #### Outline - Camera model and calibration - Some pose estimation algorithms with a known 3D model - P3P - POS and POSIT [DD95] - EPnP algorithm [LFNP09] - \bullet Others EPnP algorithms - Transformation between images - 4 Motion estimation - Conclusion - 6 Links and bibliography # P3P: pose estimation with the smallest correspondence subset Most of the P3P approaches rely on a 2 steps solution: - Estimation of the unknown depth of each point (in \mathcal{F}_c) - Estimating the rigid transformation that maps the coordinates expressed in \mathcal{F}_c to the coordinates expressed in \mathcal{F}_w Myriam Servières (ECN - AAU/CRENAU) Myriam Servières (ECN - AAU/CRENAU) Pose estimation tutorial ◆母 → ← = → → = → の Q ○ #### Outline - Some pose estimation algorithms with a known 3D model - P3P - POS and POSIT [DD95] - EPnP algorithm [LFNP09] - Others EPnP algorithms - Conclusion - 6 Links and bibliography # P3P: pose estimation with the smallest correspondence subset - Estimation of the unknown depth of each point (in \mathcal{F}_c): - ▶ Use of triangles O_cAB , O_cBC and O_cAC and the law of cosines: $$Y^2 + Z^2 - 2YZ\cos\alpha - |BC|^2 = 0$$ $$Z^2 + X^2 - 2ZX \cos \beta - |AC|^2 = 0$$ $$X^2 + Y^2 - 2XY \cos \gamma - |AB|^2 = 0$$ - ► Solve a fourth order polynomial equation (example in [GHTC03]) - \rightarrow up to 4 four possible solutions - Estimating the rigid transformation from \mathcal{F}_c to \mathcal{F}_w Necessity to have a 4th point to disambiguate the results. # POS and POSIT [DD95]: overview of the problem #### Notations: - O center of projection - $(\vec{i}, \vec{j}, \vec{k})$ the camera frame - f focal length - G the image plane - C the central point #### Hypothesis: - pinhole camera model - *n* non coplanar 3D points: $M_0, M_1, \ldots M_n$ - m_0 , m_1 , ... m_n : perspective projection in image plane of the corresponding 3D points # POS and POSIT [DD95]: overview of the problem #### Notations: • \mathcal{F}_o : object frame as M_0 origin with (u, v, w) $$ullet M_i = egin{bmatrix} U_i \ V_i \ W_i \end{bmatrix}$$ in ${\mathcal F}_o$ • $$m_i = \begin{bmatrix} x_i \\ y_i \end{bmatrix}$$ in the image plane #### Hypothesis: • the shape of the object is known $\Rightarrow M_i$ coordinates in \mathcal{F}_o are known We want to retrieve $[X_i, Y_i, Z_i]^T$ coordinates of M_i in \mathcal{F}_c vriam Servières (ECN - AAU/CRENAU) POS and POSIT [DD95]: overview of the problem - K: plane parallel to image plane G containing M_0 at Z_0 from \mathcal{F}_c - Problem: compute **R**, **t** # POS and POSIT [DD95]: Compute R, t # POS and POSIT [DD95]: Compute R, t $$\mathbf{t} = \begin{bmatrix} X_0 \\ Y_0 \\ Z_0 \end{bmatrix}$$ and O, m_0 and M_0 aligned: $\mathbf{t} = \frac{Z_0}{\epsilon} \vec{Om_0}$ Then to get \mathbf{t} , only Z_0 is missing. # POS and POSIT [DD95]: Compute R, t The object pose is fully defined once we have \vec{i} , \vec{j} and Z_0 . 4□ > 4同 > 4 = > 4 = > ■ 900 # POS and POSIT [DD95]: Compute R, t - SOP scaling factor: $s = \frac{f}{Z_0}$ - M_0 projects on m_0 with SOP and PP We can write: $$x'_{i} = f \frac{X_{i}}{Z_{0}} = f \frac{X_{i} - X_{0} + X_{0}}{Z_{0}}$$ = $x_{0} + s(X_{i} - X_{0})$ And deduce: $$x'_i = x_0 + s(X_i - X_0)$$ $y'_i = y_0 + s(Y_i - Y_0)$ and: $\vec{m_0} p_i = \frac{f}{Z_0} \vec{M_0} P_i$ # POS and POSIT [DD95]: Compute R, t - Scaled orthographic projection (SOP): - ► an approximation to *true* perspective projection - consider an object that we can consider all points with the same depth - SOP vs. Perspective projection (PP): | 1 | 1 | |--|--| | SOP | PP | | $M_i \Rightarrow P_i \Rightarrow p_i$ | $M_i \Rightarrow m_i$ | | $p_i = (x_i', y_i')^T$ | $m_i = (x_i, y_i)^T$ | | $p_i = (f\frac{X_i}{Z_0}, f\frac{Y_i}{Z_0})^T$ | $m_i = (f\frac{X_i}{Z_i}, f\frac{Y_i}{Z_i})^T$ | # POS and POSIT [DD95]: Compute R, t - Known coordinates of $\vec{M_0 M_i}$ and $\vec{m_0}\vec{m_i}$ - Unknown: \vec{i} , \vec{j} and Z_0 - Links between known and unknown: $$M_0 \dot{M}_i \cdot \frac{f}{Z_0} \ddot{i} = x_i (1 + \epsilon_i) - x_0$$ $M_0 \dot{M}_i \cdot \frac{f}{Z_0} \ddot{j} = y_i (1 + \epsilon_i) - y_0$ with $\epsilon_i = \frac{1}{Z_0} \vec{M_0 M_i} \cdot \vec{k}$ [demonstration in [DD95]] # POS and POSIT [DD95]: Compute R, t Re-writing: $$M_0 \vec{M}_i \cdot \vec{I} = x_i (1 + \epsilon_i) - x_0$$ $M_0 \vec{M}_i \cdot \vec{J} = y_i (1 + \epsilon_i) - y_0$ with $$\vec{I} = \frac{f}{Z_0} \vec{i}$$ $$\vec{J} = \frac{f}{Z_0} \vec{j}$$ So if give values to $\epsilon_i \Rightarrow \text{linear}$ system with two unknowns \vec{l} and ◆□ ▶ ◆□ ▶ ◆■ ▶ ● ◆○○ # POS and POSIT [DD95]: POSIT algorithm POSIT algorithm: POS with iterations • Solve \vec{i} and \vec{j} then estimate ϵ_i [From [Mar13]] # POS and POSIT [DD95]: POSIT algorithm POS and POSIT [DD95]: POS algorithm POS algorithm: Pose from • Give an approximate value to $\vec{i} = \vec{I}/||\vec{I}||$ $ec{j} = ec{J}/||ec{J}||$ $\vec{k} = \vec{i} \times \vec{i}$ Solve linear system with unknowns \vec{l} and \vec{J} • Get \vec{i} , \vec{i} , \vec{k} with • Get $Z_0 = \frac{f}{r}$ Orthography and Scaling - Extended to coplanar feature points in [ODD96] - Note: an implementation of POSIT for leaning purposes can be found at #### Outline - Some pose estimation algorithms with a known 3D model - P3P - POS and POSIT [DD95] - EPnP algorithm [LFNP09] - Others EPnP algorithms - Motion estimation - 5 Conclusion - 6 Links and bibliography 4□ → 4周 → 4 = → 4 = → 9 Q P Myriam Servières (ECN - AAU/CRENAU) riam Servières (ECN - AAU/CRENAU) ◆□▶ ◆御▶ ◆筆▶ ◆筆▶ ■ 釣Q@ EPnP algorithm [LFNP09]: Parameterization in the General Case • p_i , i = 1, ..., n: the n points whose 3D coordinates are known in \mathcal{F}_{w} ullet $c_j, j=1,\ldots,4$: the 4 control points coordinates in $\mathcal{F}_{\iota\iota\iota}$ $p_i^w = \sum_{i=1}^4 lpha_{ij} c_j^w$, with $\sum_{i=1}^4 lpha_{ij} = 1$ where the α_{ii} are homogeneous barycentric coordinates. - Can also be expressed in \mathcal{F}_c : $p_i^c = \sum_{i=1}^4 \alpha_{ij} c_i^c$ - In theory the control points can be chosen arbitrarily, but for stability reason: - ▶ taking the centroid of the *n* reference points as one - select the others in such a way that they form a basis aligned with the principal directions # EPnP algorithm [LFNP09] - non-iterative solution to the PnP problem applicable for all n > 4 - handles both
planar and non-planar configurations - n 3D points coordinates expressed as a weighted sum of four virtual control points - pose problem : estimation of the coordinates of control points in \mathcal{F}_c - can be done in O(n) - expressing these coordinates as weighted sum of the eigenvectors of a 12×12 matrix - solving a small constant number of quadratic equations to pick the right weights EPnP algorithm [LFNP09]: The Solution as Weighted Sum of Eigenvectors • $x_{i_{i=1,...,n}}$ the 2D projections of the $p_{i_{i=1,...,n}}$ reference points: $$\forall i, \lambda_i \begin{bmatrix} x_i \\ 1 \end{bmatrix} = \mathbf{K} p_i^c = \mathbf{K} \sum_{i=1}^4 \alpha_{ij} c_j^c$$ • with $c_i^c = [x_i^c, y_i^c, z_i^c]^T$ and $x_i = [u_i, v_i]^T$: $$\forall i, \lambda_i \begin{bmatrix} u_i \\ v_i \\ 1 \end{bmatrix} = \begin{bmatrix} f_x & 0 & u_0 \\ 0 & f_y & v_0 \\ 0 & 0 & 1 \end{bmatrix} \sum_{j=1}^4 \alpha_{ij} \begin{bmatrix} x_j^c \\ y_j^c \\ z_j^c \end{bmatrix}$$ - ▶ The unknown parameters of this linear system are the 12 control point coordinates $\{(x_i^c, y_i^c, z_i^c)\}_{i=1,\dots,4}$ and the n projective parameters $\{\lambda_i\}_{j=1,\dots,n}$. • last row implies $\lambda_i = \sum_{j=1}^4 \alpha_{ij} z_j^c$ # EPnP algorithm [LFNP09]: The Solution as Weighted Sum of Eigenvectors • Substituting λ_i expression in the first two rows gives two linear equations for each reference point: $$\sum_{j=1}^{4} \alpha_{ij} f_{x} x_{j}^{c} + \alpha_{ij} (u_{0} - u_{i}) z_{j}^{c} = 0$$ $$\sum_{j=1}^{4} \alpha_{ij} f_{y} y_{j}^{c} + \alpha_{ij} (v_{0} - v_{i}) z_{j}^{c} = 0$$ - \bullet λ_i does not appear anymore in those equations - concatenating them for all *n* reference points give a linear system: Mx = 0 where - $\mathbf{x} = [c_1^{cT}, c_2^{cT}, c_3^{cT}, c_4^{cT}]^T$ is a 12-vector made of the unknowns - ▶ M is a $n \times 12$ matrix generated by arranging the coefficients of the two last equations for each reference point Myriam Servières (ECN - AAU/CRENAU) Pose estimation tutorial EPnP algorithm [LFNP09]: Choosing the Right Linear Combination - the effective dimension N of the null space of M^TM can vary from 1 to 4 depending on the configuration of the reference points, the focal length of the camera, and the amount of noise - compute solutions for all four values of N and keep the one that yields the smallest reprojection error $$\mathit{res} = \sum_{i} d^{2} \left(\mathcal{K}[R|t] \begin{pmatrix} p_{i}^{w} \\ 1 \end{pmatrix}, x_{i} \right)$$ with $d(\tilde{a}, b)$ the 2D distance between point a expressed in homogeneous coordinates, and point b. Note: Details on the 4 cases are given in [LFNP09] # EPnP algorithm [LFNP09]: The Solution as Weighted Sum of Eigenvectors Solving Mx = 0 • the solution therefore belongs to the null space of M, and can be expressed as $$x = \sum_{i=1}^{N} \beta_i \mathbf{v}_i$$ where the set \mathbf{v}_i are the columns of the right-singular vectors of M corresponding to the N null singular values of M - they can be computed as the null eigenvectors of matrix M^TM - M^TM is 12×12 - ▶ Computing M^TM has O(n) complexity vriam Servières (ECN - AAU/CRENAU) イロト 4周ト 4 三ト 4 三ト 三 めのぐ # EPnP algorithm [LFNP09] - non-iterative solution to the PnP problem applicable for all n > 4 - handles both planar and non-planar configurations - n 3D points coordinates expressed as a weighted sum of four virtual control points - pose problem : estimation of the coordinates of control points in \mathcal{F}_c - To improve accuracy: the output of the closed-form solution can be used to initialize a Gauss-Newton scheme that will choose the values β_i that minimize the change in distance between control points #### Outline - Some pose estimation algorithms with a known 3D model - P3P - POS and POSIT [DD95] - EPnP algorithm [LFNP09] - Others EPnP algorithms - Motion estimation - Conclusion - 6 Links and bibliography 4□ > 4回 > 4 = > 4 = > = 900 Myriam Servières (ECN - AAU/CRENAU) Others EPnP algorithms - It also exists iterative techniques as for ex. LHM [LHM00]: orthogonal iteration method to directly minimize the object space error - A good review as speed and accuracy of 13 PnP methods can be found in [ULH16] - \Rightarrow MLPnP has similar execution times compared to the fastest methods (EPnP still faster) and is better in terms of accuracy. - Algorithms implementations can be found in OpenCV and OpenGV [KLS14] #### Others EPnP algorithms - EPnP[LFNP09]: first accurate O(N) solution to the PnP - Other interesting O(n) solutions when the number of point correspondences increases: - ▶ OPnP [ZKS $^+$ 13]: Optimal PnP parameterize the rotation by using non-unit quaternion and formulate the PnP problem into an unconstrained optimization problem. - ► GPnP [KFS13]: non-iterative n-point solution with linear complexity in the number of points – Extension of EPnP to Non-Perspective-n-Point problem (NPnP problem) - ▶ UPnP [KLS14]: Universal PnP applicable to both central and non-central camera systems - ▶ MLPnP [ULH16]: real-time Maximum Likelihood solution to the Perspective-*n*-Point problem – statistically optimal solution to PnP **...** vriam Servières (ECN - AAU/CRENAU) 4□ > 4□ > 4□ > 4□ > 4□ > 900 #### PnP calculation demo Code from OpenCV real time pose estimation of a textured object tutorial https://docs.opencv.org/3.3.0/dc/d2c/tutorial_real_time_pose.html - Estimate the camera pose in order to track a textured object with six degrees of freedom given a 2D image and its 3D textured model - ▶ Read 3D textured object model and object mesh - ▶ Take input from Camera or Video - Extract ORB features and descriptors from the scene - Match scene descriptors with model descriptors - ▶ Pose estimation using PnP + Ransac - Linear Kalman Filter for bad poses rejection - Transformation between images - Epipolar geometry - Homography - How to get correspondences - 3D reconstruction - 6 Links and bibliography ◆ロト ◆雨 ◆ モト ◆ ヨ ◆ のQ ○ Myriam Servières (ECN - AAU/CRENAU) ## Outline - Camera model and calibration - 2 Some pose estimation - Transformation between images - Epipolar geometry - Epipolar constraint - Essential Matrix - Fundamental matrix - Homography - How to get correspondences - 3D reconstruction - Conclusion - 6 Links and bibliography Myriam Servières (ECN - AAU/CRENAU) Myriam Servières (ECN - AAU/CRENAU) #### Outline - Some pose estimation - Transformation between images - Epipolar geometry Epipolar constraint - Essential Matrix - Fundamental matrix - Homography - How to get correspondences - 3D reconstruction - Conclusion - 6 Links and bibliography ## The epipolar constraint #### The epipolar constraint イロト 4周ト 4 三ト 4 三 り 4 〇 ト Myriam Servières (ECN - AAU/CRENAU) # The epipolar constraint camera plane 1 epipolar line optical center 1 optical center 2 - epipolar constraint: for any point in the first image, the corresponding point in the second image is constrained to lie on a line - The epipolar line depends on the intrinsic and extrinsic parameters of the cameras ### The epipolar constraint | | ▼ E | □ ト | 4 (1) | 1 = 1 | • 4 € ▶ | = | 4) d (4 | |--------------------------------------|--------------------------|-----|-------|-------|-----------|---|----------| | Myriam Servières (ECN - AAU/CRENAU) | Pose estimation tutorial | | | | IPIN 2018 | | 95 / 181 | ## The epipolar constraint #### Practical applications [Pri12]: - Finding point correspondences (given intrinsic and extrinsic parameters): for a point in the first image, perform a 1D search along the epipolar line in the second image for the corresponding position - Constraint on corresponding points is a function of the intrinsic and extrinsic parameters - ⇒ Use the observed pattern of point correspondences to determine the extrinsic parameters - ⇒ Get the geometric relationship between the two cameras ## The epipole [From [Pri12]] Myriam Servières (ECN - AAU/CRENAU) 4□ > 4周 > 4 = > 4 = > = 900 Outline - Some pose estimation - Transformation between images - Epipolar geometry - Epipolar constraint - Essential Matrix - Fundamental matrix - Homography - How to get correspondences - 3D reconstruction ### The epipolar plane Myriam Servières (ECN - AAU/CRENAU) イロト イラト イヨト ヨ めので # Normalized coordinates [HZ04] Let's consider: - $ilde{X}_w = egin{bmatrix} X_w \\ 1 \end{bmatrix}$ a point in the word in homogeneous coordinates - Camera matrix $\mathbf{P} = \mathbf{K}[\mathbf{R}|\mathbf{t}]$ and $\lambda \tilde{\mathbf{x}}_i = \mathbf{P}\tilde{X}_w$ a point in the image - K is known We can get normalized coordinates: - $\lambda \hat{\mathbf{x}}_i = \lambda \mathbf{K}^{-1} \tilde{X}_i \Rightarrow \lambda \hat{\mathbf{x}}_i = [\mathbf{R}|\mathbf{t}] \tilde{X}_w$ ($\hat{\mathbf{x}}_i$ stills in homogeneous coordinates) - ullet equivalent to a camera where ${f K}={f I}$ Normalized camera matrix: $P' = K^{-1}P = [R|t]$ # Essential matrix [Pri12] The geometric relationship between the two cameras is captured by the essential matrix. • Assume normalized cameras, first camera at origin. $$\lambda_1 \hat{\mathbf{x}}_{i1} = [\mathbf{I}|0] \tilde{X}_w$$ $$\lambda_2 \hat{\mathbf{x}}_{i2} = [\mathbf{R}|\mathbf{t}] \tilde{X}_w$$ - 1^{rst} camera: $\lambda_1 \hat{\mathbf{x}}_{i1} = X_w$ - 2^{nd} camera: $\lambda_2 \hat{\mathbf{x}}_{i2} = \mathbf{R} X_{\omega} + \mathbf{t}$ - Substituting: $$\lambda_2 \hat{\mathbf{x}}_{i2} = \lambda_1 \mathbf{R} \hat{\mathbf{x}}_{i1} + \mathbf{t}$$ Myriam Servières (ECN - AAU/CRENAU) 4D > 4B > 4B > B 990 # Essential matrix [Pri12] $$\hat{\mathbf{x}}_{i2}^T\mathbf{t}\times\mathbf{R}\hat{\mathbf{x}}_{i1}=0$$ • The cross product term can be expressed as a matrix: $$\mathbf{t}_{ imes} = egin{bmatrix} 0 & -t_z & t_y \ t_z & 0 & -t_x \ -t_y & t_x & 0 \end{bmatrix}$$ • Defining the *essential matrix*: $$\boldsymbol{E} = \boldsymbol{t}_{\times}\boldsymbol{R}$$ • and the essential matrix relation: $$\hat{\mathbf{x}_{i2}}^T \mathbf{E} \hat{\mathbf{x}}_{i1} = 0$$ ## Essential matrix
[Pri12] Constraint between the possible positions of corresponding points in the two images $$\lambda_2 \hat{\mathbf{x}}_{i2} = \lambda_1 \mathbf{R} \hat{\mathbf{x}}_{i1} + \mathbf{t}$$ • take cross product with t: $$\lambda_2 \mathbf{t} \times \hat{\mathbf{x}}_{i2} = \lambda_1 \mathbf{t} \times \mathbf{R} \hat{\mathbf{x}}_{i1}$$ • take inner product with $\hat{\mathbf{x}}_{i2}$: $$\hat{\mathbf{x}_{i2}}^T \mathbf{t} \times \mathbf{R} \hat{\mathbf{x}}_{i1} = 0$$ Myriam Servières (ECN - AAU/CRENAU) イロト イラト イヨト ヨ めので ## Properties of the essential matrix [Pri12] $$\hat{\mathbf{x}_{i_2}}^T \mathbf{E} \hat{\mathbf{x}}_{i_1} = 0$$ - Rank 2: det[E] = 0 - 5 D.o.F. - Non-linear constraint between elements: $$2\mathbf{E}\mathbf{E}^T\mathbf{E} - trace[\mathbf{E}\mathbf{E}^T]\mathbf{E} = 0$$ ## Computing the essential matrix - 5-point algorithm [Nis04] - 8-point algorithm [Lh81] - $\hat{\mathbf{x}}_{i2}^T \mathbf{E} \hat{\mathbf{x}}_{i1} = 0$ - can be solved with SVD Myriam Servières (ECN - AAU/CRENAU) lyriam Servières (ECN - AAU/CRENAU) イロト イ団ト イヨト イヨト ヨー かなべ # Recovering epipolar lines [Pri12] - Equation of a line : $I\tilde{x} = 0$ - Now consider: $$\hat{\mathbf{x}_{i2}}^T \mathbf{E} \hat{\mathbf{x}}_{i1} = 0$$ - This as the form $l_1 \hat{\mathbf{x}}_{i1} = 0$ where $l_1 = \hat{\mathbf{x}}_{i2}^T \mathbf{E}$ - So the epipolar lines can be expressed as: $$I_1 = \hat{\mathbf{x}_{i2}}^T \mathbf{E}$$ $$I_2 = \hat{\mathbf{x}_{i1}}^T \mathbf{E}$$ ## Recovering epipolar lines [Pri12] • Equation of a line: $$ax + by + c = 0$$ or: $$\begin{bmatrix} a & b & c \end{bmatrix} \begin{bmatrix} x \\ y \\ 1 \end{bmatrix} = 0$$ or: $$I\tilde{x}=0$$ ## Recovering epipoles [Pri12] • Every epipolar line in image 1 passes through the epipole e_1 $$\Rightarrow \hat{\mathbf{x}}_{i2}^T \mathbf{E} \tilde{e}_1 = 0$$ for all $\hat{\mathbf{x}_{i2}}^T$ • This can only be true if \tilde{e}_1 is in the nullspace of **E**: $$\tilde{e}_1 = null[E]$$ • Similarly: $$\tilde{e}_2 = null[E^T]$$ We find the null spaces by computing the SVD of **E**: $$\mathbf{E} = UDV^T$$ and taking \tilde{e}_1 the last column of V and \tilde{e}_2 the last row of U # Retrieving **R**, **t** from **E** [Pri12] Relative orientation problem: recover R, t from E Essential matrix $$\boldsymbol{E} = \boldsymbol{t}_{\times}\boldsymbol{R}$$ • To recover **R**, **t** use the matrix $$W = \begin{bmatrix} 0 & -1 & 0 \\ 1 & 0 & 0 \\ 0 & 0 & 1 \end{bmatrix}$$ • With $\mathbf{E} = UDV^T$ we get: $$\mathbf{t}_{\times} = UDWU^{T}$$ $$\mathbf{R} = UW^{-1}V^{T}$$ (details in [HZ04]) • Need 2 corresponding points to solve ambiguities and have R and t where points are in front of both cameras Myriam Servières (ECN - AAU/CRENAU) Pose estimation tutorial ## Fundamental Matrix [Pri12] • Lets consider two normal (not normalized) cameras: $$\lambda_1 \tilde{\mathbf{x}}_1 = \mathbf{K}_1 [\mathbf{I}|0] \tilde{X}_w$$ $$\lambda_2 \tilde{\mathbf{x}}_2 = \mathbf{K}_2 [\mathbf{R}|\mathbf{t}] \tilde{X}_w$$ • Using a similar procedure we can get the relation: $$\tilde{\mathbf{x}}_2^T \mathbf{K}_2^{-T} \mathbf{E} \mathbf{K}_1^{-1} \tilde{\mathbf{x}}_1 = 0$$ or: $$\tilde{\mathbf{x}}_2^T \mathbf{F} \tilde{\mathbf{x}}_1 = 0$$ with: $$\mathbf{F} = \mathbf{K}_2^{-T} \mathbf{E} \mathbf{K}_1^{-1} = \mathbf{K}_2^{-T} \mathbf{t}_{\times} \mathbf{R} \mathbf{K}_1^{-1}$$ Relation between essential and fundamental matrix: $$\mathbf{E} = \mathbf{K}_2^T \mathbf{F} \mathbf{K}_1$$ #### Outline - 2) Some pose estimation - Transformation between images - Epipolar geometry - Epipolar constraint - Essential Matrix - Fundamental matrix - Homography - How to get correspondences - 3D reconstruction - 6 Links and bibliography yriam Servières (ECN - AAU/CRENAU) 4□ > 4圖 > 4 = > = 9 < ○</p> # Estimate the fundamental matrix [Pri12] - When the fundamental matrix is correct with $\tilde{\mathbf{x}}_{i2}^T \mathbf{F} \tilde{\mathbf{x}}_{i1} = 0$, the epipolar line induced by a point in the first image should pass through the matching point in the second image and vice-versa - Constraint parameterized by the nine entries of **F** - Criterion: minimize the squared distance between every point and the epipolar line predicted by its match in the other image (*I* corresponding points): $$\hat{F} = \operatorname*{arg\,min}_{\mathbf{F}} \left[\sum_{i=1}^{I} \left((\mathit{dist}[\mathbf{x}_{i1},\mathit{l}_{i1}])^2 + (\mathit{dist}[\mathbf{x}_{i2},\mathit{l}_{i2}])^2 \right) \right]$$ • $dist[\mathbf{x}, I] = \frac{ax + by + c}{\sqrt{a^2 + b^2}}$ with I = [a, b, c] and $\mathbf{x} = [x, y]^T$ No closed form solution # Estimate the fundamental matrix: the eight-point algorithm [Pri12] - Approach - solve for fundamental matrix using homogeneous coordinates - closed form solution (but don't minimize a geometric error but an algebraic error) - solution usually very close to the values that optimize the previous cost function - In homogeneous coordinates: $$\tilde{\mathbf{x}}_{2}^{T}\mathbf{F}\tilde{\mathbf{x}}_{1} = 0 \Rightarrow \begin{bmatrix} x_{i2} & y_{i2} & 1 \end{bmatrix} \begin{bmatrix} f_{11} & f_{12} & f_{13} \\ f_{21} & f_{22} & f_{23} \\ f_{31} & f_{32} & f_{33} \end{bmatrix} \begin{bmatrix} x_{i1} \\ y_{i1} \\ 1 \end{bmatrix} = 0$$ Myriam Servières (ECN - AAU/CRENAU) 4□ > 4周 > 4 = > 4 = > = 40 lyriam Servières (ECN - AAU/CRENAU) algorithm [Pri12] • Can be expressed as: $A\mathbf{f} = 0$ with • Find minimum of $|A\mathbf{f}|^2$ subject to $|\mathbf{f}| = 1$ Estimate the fundamental matrix: the eight-point $\mathbf{f} = [f_{11}, f_{12}, f_{13}, f_{21}, f_{22}, f_{23}, f_{31}, f_{32}, f_{33}]^T$ and A contains the • Solution can be found by SVD of A: $A = UDV^T$, setting **f** to combination of at least 8 pairs of points coordinates イロト イラト イヨト ヨ めので # Outline Camera model and calibration the last column of V Reform F form f - 2) Some pose estimation - Transformation between images - Epipolar geometry - Homography - Definition and properties - Homography estimation - From homography to pose computation - How to get correspondences - 3D reconstruction - Conclusion - 6 Links and bibliography ## Estimate the fundamental matrix: the eight-point algorithm [Pri12] - This procedure does not ensure that solution is rank 2. Solution: set last singular value to zero. - Can be unreliable because of numerical problems to do with the data scaling \rightarrow better to re-scale the data first - Needs 8 points in general positions (cannot all be planar). - Fails if there is not sufficient translation between the views - Transformation between images - Epipolar geometry - Homography - Definition and properties - Homography estimation - From homography to pose - How to get correspondences - 3D reconstruction - 6 Links and bibliography 4日 → 4 日 → 4 目 → 1 目 り 9 ○ ○ Myriam Servières (ECN - AAU/CRENAU) lyriam Servières (ECN - AAU/CRENAU) ◆□ ▶ ◆□ ▶ ◆■ ▶ ● ◆○○ ## Homography: definition and properties • Homography mapping $\tilde{\mathbf{x}}_1$ and $\tilde{\mathbf{x}}_2$ linear in homogeneous coordinates $$\lambda \begin{bmatrix} x_1 \\ y_1 \\ 1 \end{bmatrix} = \begin{bmatrix} h_{11} & h_{12} & h_{13} \\ h_{21} & h_{22} & h_{23} \\ h_{31} & h_{32} & h_{33} \end{bmatrix} \begin{bmatrix} x_2 \\ y_2 \\ 1 \end{bmatrix}$$ - images seen by different cameras with the pinhole in the same place are related by homographies - special case **pure rotation**: If the camera rotates but *does not* translate, the tomography mapping image 1 to image 2 is written: $$H = KRK^{-1}$$ with K intrinsic matrix and R rotation between the two camera positions ## Homography: definition and properties Homography: definition and properties Homography maps between [Pri12]: - points on a plane in the world and their positions in an image, - points in two different images of the same plane - two images of a 3D object where the camera has rotated but not translated In the planar case, we can chain the homographies between consecutive frames. - Some pose estimation - Transformation between images - Epipolar geometry - Homography - Definition and properties - Homography estimation - From homography to pose - How to get correspondences - 3D reconstruction - 6 Links and bibliography 4日 → 4 日 → 4 目 → 1 目 り 9 ○ ○ Myriam Servières (ECN - AAU/CRENAU) ◆□ ▶ ◆□ ▶ ◆■ ▶ ● ◆○○ #### Outline - Transformation between images - Epipolar geometry - Homography - Definition and properties - Homography estimation - From homography to pose computation - How to get correspondences - 3D reconstruction ## Homography estimation [HZ04] #### Objective: Given $n \ge 4$ 2D to 2D point correspondences $\mathbf{x}'_i \leftrightarrow \mathbf{x}'_i$, determine the 2D homography matrix **H** such as $\mathbf{x}'_i = \mathbf{H}\mathbf{x}_i$ Algorithm - **1** Normalization of x_i : $\tilde{x}_i = Tx_i$ - **2** Normalization of \mathbf{x}'_i : $\tilde{\mathbf{x}}'_i = T\mathbf{x}'_i$ - ODLT: - For each correspondence $\tilde{\mathbf{x}'}_i \leftrightarrow \tilde{\mathbf{x}}_i$ compute the matrix A_i . - 2 Form the $2n \times 9$ matrix A - f o Write $f { ilde h}$ for the vector containing the entries of the matrix $f { ilde H}$. A solution of $A\tilde{\mathbf{h}} = 0$, subject to $||\tilde{h}|| = 1$, is obtained from the unit singular vector of A corresponding to the smallest singular value. - The matrix $\tilde{\mathbf{H}}$ is determined from $\tilde{\mathbf{h}}$ - **Denormalization**: Set $\mathbf{H} = T'^{-1}\tilde{\mathbf{H}}T$ Myriam Servières (ECN - AAU/CRENAU) Pose estimation tutorial ## From homography to pose computation - All points are in the same plane, then fix $z_w = 0$ - \Rightarrow each 3D point coordinate is given by $X_w = \begin{bmatrix} x_w \\ y_w \\ 0 \end{bmatrix}$ - Their projections in the image plane are given by $$X_c = [\mathbf{I}|0][\mathbf{R}|\mathbf{t}] \begin{bmatrix} x_w \\ y_w \\ 0 \\ 1 \end{bmatrix} = [\mathbf{I}|0][r_1r_2\mathbf{t}] \begin{bmatrix} x_w \\ y_w \\ 1 \end{bmatrix} = \mathbf{H} \begin{bmatrix} x_w \\ y_w \\ 1 \end{bmatrix}$$ with r_i the i^{th}
column of **R** • H can be computed using DLT ## From homography to pose computation • Knowing H, R, t can be computed noting: $$[r_1r_2\mathbf{t}]=[\mathbf{I}|0]^{-1}\mathbf{H}$$ • **R** is orthogonal then : $r_3 = r_1 \times r_2$ 4□ → 4回 → 4 亘 → 4 亘 → 9 0 0 ○ Myriam Servières (ECN - AAU/CRENAU) ### Outline - 2 Some pose estimation - Transformation between images - Epipolar geometry - Homography - How to get correspondences - Feature point matching principle and properties - Corner detector - Feature detectors - Outliers removal - 3D reconstruction - Conclusion #### Outline - Camera model and calibration - Some pose estimation - Transformation between images - Epipolar geometry - Homography - How to get correspondences - Feature point matching principle and properties - Corner detector - SIFT - Feature detectors - Outliers removal - 3D reconstruction - Conclusion - 6 Links and bibliography Myriam Servières (ECN - AAU/CRENAU) ◆ロト ◆御 ト ◆ 恵 ト ◆ 恵 ・ 夕 ♀ ○ ## Feature point matching principle - Finding corresponding points (2D point in the image and a 3D reference or between two 2D images) - Common framework: - keypoints extraction: subset of pixels ("cornerness") - description: conversion into a descriptor - matching between descriptors - Common process: - off-line : - * keypoint descriptors computed off-line on a reference model - ★ key-point storage - on-line: - ★ extract keypoint from each image - ★ match in the descriptor space with those in the database - ★ from correspondences, compute camera pose ## Feature points detectors properties - Repeatability - Invariance - Robustness - Distinctiveness/informativeness - Locality - Quantity - Accuracy - Efficiency イロト イラト イヨト ヨー かなべ Myriam Servières (ECN - AAU/CRENAU) #### Corner detector - Moravec [Mor80], Harris corner-detector [HS88], Shi-Tomasi [ST02] - Harris corner-detector: Studies the average variation in intensity for a small movement $$E(u, v) = \sum_{x,y} w(x, y) [I(x + u, y + v) - I(x, y)]^{2}$$ - E: the difference between the original and the moved window. - \triangleright u, v: window's displacement in the x (resp. y) direction - \triangleright w(x,y): window function - ightharpoonup I: image intensity at a position (x, y) - $\vdash I(x,y)$: original intensity - ▶ I(x + u, y + v): shifted intensity #### Outline - Some pose estimation - - images Epipolar geometry Transformation between - Homography - How to get correspondences - Feature point matching - Corner detector - SIFT - Feature detectors - Outliers removal - 3D reconstruction - 6 Links and bibliography Myriam Servières (ECN - AAU/CRENAU) ◆ロト ◆御 ト ◆ 恵 ト ◆ 恵 ・ 夕 ♀ ○ # Corner detector Expansion using Talor series: $$E(u, v) \approx \sum_{x,y} w(x,y) [I(x,y) + uI_x + vI_y - I(x,y)]^2$$ $$\approx \sum_{x,y} w(x,y) [u^2 I_x^2 + 2uvI_x I_y + v^2 I_y^2]$$ with I_x gradient along x, I_y gradient along y in matrix form $$E(u,v) \approx \begin{bmatrix} u & v \end{bmatrix} \left(\sum_{x} w(x,y) \begin{bmatrix} I_x^2 & I_x I_y \\ I_x I_y & I_y^2 \end{bmatrix} \right) \begin{bmatrix} u \\ v \end{bmatrix}$$ $$\approx \begin{bmatrix} u & v \end{bmatrix} M \begin{bmatrix} u \\ v \end{bmatrix}$$ • M: symmetric, define, positive \Rightarrow eigenvalues decomposition #### Corner detector • A score. R. is calculated for each window: $$R = det(M) - k(trace(M))^2$$ with $det(M) = \lambda_1 \lambda_2$ and $trace(M) = \lambda_1 + \lambda_2$ \bullet R values are > 0 around a corner, < 0 around an edge and small in a constant region Note: Shi-Tomasi detector has improved Harris detector 4□ > 4周 > 4 = > 4 = > = 40 Myriam Servières (ECN - AAU/CRENAU) SIFT [Low04] - SIFT: Distinctive image features from scale invariant keypoint (1999) [Low04] - has been considered a breakthrough for 2D points matching - Robust to - Scale - Rotation - Illumination - Viewpoint #### Outline - Camera model and calibration - Some pose estimation - Transformation between images - Epipolar geometry - Homography - How to get correspondences - Feature point matching - Corner detector - SIFT - Feature detectors - Outliers removal - 3D reconstruction - 6 Links and bibliography Myriam Servières (ECN - AAU/CRENAU) 4□ > 4圖 > 4 = > = 9 < ○</p> # SIFT [Low04] algorithm principle - Constructing a scale space - 2 Laplacian of Gaussian (LoG) approximation using Difference of Gaussian (DoG) - Finding keypoints - Get rid of bad key points (edges and low contrast regions) - Sassigning an orientation to the keypoints (cancels out the effect) of orientation) - Generate SIFT features A detailed explanation can be found in [ROD14]. - Transformation between images - Epipolar geometry - Homography - How to get correspondences - Feature point matching - Corner detector - SIFT - Feature detectors - Outliers removal - 3D reconstruction 4日 → 4 日 → 4 目 → 1 目 り 9 ○ ○ Myriam Servières (ECN - AAU/CRENAU) ## Outline - Transformation between images - Epipolar geometry - Homography - How to get correspondences - Feature point matching - Corner detector - SIFT - Feature detectors - Outliers removal - 3D reconstruction - Conclusion #### Feature detectors - FAST [ST02] - SIFT [Low04] - SURF [BETV08] - ORB [RRKB11] - KAZE [ABD12] - CARD [ABD12] - BRIEF [CLÖ+12] - BRISK [LCS11] - FREAK [AOV12] - LDB [XK12] - . . . Demo: Learning OpenCV3 example code Myriam Servières (ECN - AAU/CRENAU) #### Remove outliers - Causes of outliers: image noise, occlusions, blur, changes in view point or illumination (non accounted by the feature detector) - Use of RANSAC algorithm [FB81] - 1 Initial: let A be a set of N feature correspondences - 2 repeat - Randomly select a sample of s points from A - 2 Fit a model to these points - Compute the distance of all other points to this model - Onstruct the inlier set (i.e. count the number of points whose distance from the model < d) - Store these inliers - until maximum number of iterations reached - 3 The set with the maximum number of inliers is chosen as a solution to the problem - Estimate the model using all the inliers #### Remove outliers • The number of iterations N which ensures a probability p that at least one sample with only inliers is drawn is given by $$N = \frac{log(1-p)}{log(1-(1-\nu)^s)}$$ with - $\triangleright \nu$ the probability that a correspondence is an outlier - s the number of point from which the model can be instantiated - Example: p=99%, s=5, $\nu=50\% \Rightarrow N=145$ イロト 4周ト 4 三ト 4 三 り 4 〇 ト Myriam Servières (ECN - AAU/CRENAU) Myriam Servières (ECN - AAU/CRENAU) images ◆ロト ◆御 ト ◆ 恵 ト ◆ 恵 ・ 夕 ♀ ○ ## Outline Outline Camera model and calibration Camera model and calibration 2) Some pose estimation Transformation between Epipolar geometry - Some pose estimation Motion estimation Homography Motion estimation 6 Links and bibliography Conclusion 3D reconstruction How to get correspondences - Principle - Motion from feature - SLAM - 6 Links and bibliography 3D reconstruction principle pipeline [Pri12] - Compute image features - 2 Compute feature descriptors - Find initial matches - Compute fundamental matrix - Refine matches - Estimate essential matrix - Decompose essential matrix (four possibles solutions) - Estimate 3D points. - Camera model and calibration - Some pose estimation algorithms with a known 3D model - 3 Transformation between images - Motion estimation - Principle - Motion from feature correspondences - SLAM - Conclusion - 6 Links and bibliography # Principle | イロトイラトイラト (ECN - AAU/CRENAU) | Pose estimation tutorial | IPIN 2018 | 145 / 181 # Myriam Servières (ECN - AAU/CRENAU) Pose estimation tutorial IPIN 2018 144 / 181 ## Principle ## Principle Visual Odometry (VO) compute the camera path incrementally ## Problem formulation [SF11] • Two camera position at adjacent timestamps k-1 and k are related by $$T_k = \begin{bmatrix} R_{k,k-1} & t_{k,k-1} \\ 0 & 1 \end{bmatrix}$$ - $T_{0:n} = T_1, \dots T_n$ contents to all subsequent motions - The set of camera poses $C_{0:n} = C_0, \dots, C_n$ contains the transformation of the camera w.r.t. \mathcal{F}_{w0} at k=0 - $C_n = C_{n-1} T_n = C_0 T_1 \cdots T_n$ Myriam Servières (ECN - AAU/CRENAU) 4 D > 4 B > 4 B > B 9 Q P Myriam Servières (ECN - AAU/CRENAU) • compute the relative transformations T_{k} from the images I_{k} and concatenate the transformations to recover the full trajectory • optionally perform an iterative refinement over last m poses to estimate local trajectory with more accuracy (bundle ◆ロト ◆御 ト ◆ 恵 ト ◆ 恵 ・ 夕 ♀ ○ ## Outline - Camera model and calibration - Motion estimation - Principle - Motion from feature correspondences - 2D-2D correspondences - 3D-3D correspondences - 3D-2D correspondences - SLAM # Outline VO tasks I_{k-1} $C_{0:n}$ of the camera adjustment) Camera model and calibration Problem formulation [SF11] - Some pose estimation - Motion estimation - Principle - Motion from feature correspondences - 2D-2D correspondences - 3D-3D correspondences - 3D-2D correspondences - SLAM - Links and bibliography # 2D-2D [SF11] - Both images features are specified in 2D - The minimal-case solution involve 5-point correspondences - The solution is found by determining the transformation that minimizes the reprojection error of the triangulated points in each image 90° E (E) (E) (B) (D) Myriam Servières (ECN - AAU/CRENAU) Pose estimation tutorial vriam Servières (ECN - AAU/CRENAU) #### images • Absolute scale of the translation cannot be computed from two • From 3D points, the relative distances between any combination • Scale can then be determined from the distance ratio r between $r = \frac{||X_{k-1,i} - X_{k-1,j}||}{||X_{k,i} - X_{k,i}||}$ • Triangulate 3D points position from 2D points pairs of two 3-D points can be computed. a point pair in X_{k-1} and a pair in X_k Mean scale ratio is used to scale t # Algorithm: VO for 2D-2D correspondence [SF11] - Capture new frame I_k - 2 Extract and match features between I_{k-1} and I_k - 3 Compute essential matrix for image pair I_{k-1} and I_k - **1** Decompose
essential matrix into \mathbf{R}_k and \mathbf{t}_k and form T_k - **5** Compute relative scale and rescale \mathbf{t}_k accordingly - **6** Concatenate transformation by computing $C_k = C_{k-1}T_k$ - Repeat from 1 # Outline Camera model and calibration 2D-2D relative scale [SF11] - Some pose estimation - Motion estimation - Principle - Motion from feature correspondences - 2D-2D correspondences - 3D-3D correspondences - 3D-2D correspondences - SLAM ## 3D-3D [SF11] - Both image features are specified in 3D - The minimal-case solution involve 3 non-linear correspondences - The solution is found by determining the aligning transformation that minimizes the 3D-3D distance Myriam Servières (ECN - AAU/CRENAU) Pose estimation tutorial ## Outline - Camera model and calibration - Some pose estimation - Motion estimation - Principle - Motion from feature correspondences - 2D-2D correspondences - 3D-3D correspondences - 3D-2D correspondences - SLAM ## Algorithm: VO for 3D-3D correspondence [SF11] - Capture two stereo image pairs $I_{l,k-1}$, $I_{r,k-1}$ and $I_{l,k}$, $I_{r,k}$ - 2 Extract and match features between $I_{l,k-1}$ and $I_{l,k}$ - 3 Triangulate matched features for each stereo pair - Ompute T_k from 3-D features X_{k-1} and X_k - **5** Concatenate transformation by computing $C_k = C_{k-1}T_k$ - Repeat from 1 ◆ロト ◆園 ト ◆ 恵 ト ◆ 恵 ・ 夕 Q (*) Myriam Servières (ECN - AAU/CRENAU) # 2D-3D [SF11] - Features at instant k-1 are in 3D and in 2D at k - \bullet PnP problem - The minimal-case solution involve 3 non-linear correspondences - The solution is found by determining the transformation that minimizes the reprojection error ## Algorithm: VO for 2D-3D correspondence [SF11] - Do only once: - Capture two frames I_{k-2} , I_{k-1} - Extract and match features between them - 3 Triangulate features from I_{k-2} , I_{k-1} - 2 Do at each iteration: - \bullet Capture new frame I_k - 2 Extract features and match with previous frame I_{k-1} - 3 Compute camera pose (PnP) from 3-D-to-2-D matches - **1** Triangulate all new feature matches between I_k and I_{k-1} - Iterate 4 D > 4 B > 4 B > B 9 Q P Myriam Servières (ECN - AAU/CRENAU) # Outline - Some pose estimation - Motion estimation - Principle - Motion from feature correspondences - SLAM - VO vs. SLAM - vSLAM and viSLAM - 6 Links and bibliography ## VO trajectory estimation example work from [ASR18] Myriam Servières (ECN - AAU/CRENAU) #### Outline - Camera model and calibration - Some pose estimation - Motion estimation - Principle - Motion from feature - SLAM - VO vs. SLAM - vSLAM and viSLAM - 5 Conclusion - 6 Links and bibliography #### VO vs. SLAM - SLAM: Simultaneous Localization And Mapping - global consistent estimate of the localization (and mapping) - ▶ use loop-closure to reduce the drift in the map and in the localization of the camera (global bundle adjustment) - VO - incremental localization - ► local consistent estimate of the trajectory - potential windowed bundles adjustments - VO can be a part of SLAM (before closing the loop) 4□ > 4周 > 4 = > 4 = > = 40 Myriam Servières (ECN - AAU/CRENAU) Myriam Servières (ECN - AAU/CRENAU) ## vSLAM and viSLAM algorithms - Visual SLAM - ► PTAM [KM07] - ► ORB-SLAM [MAMT15] - ► DTAM [NLD11] - ► LSD-SLAM [ESC14] - ▶ DSO [EKC16] - **•** - Visual inertial SLAM - ► MSCKF [MR07] - ► ROVIO [BOHS15] - ► S-MSCKF [SMP⁺17] - ► VINS-Mono [QLS17] #### Outline - Camera model and calibration - 2 Some pose estimation - Motion estimation - Principle - Motion from feature - SLAM - VO vs. SLAM - vSLAM and viSLAM - Conclusion - 6 Links and bibliography Outline - Camera model and calibration - 2 Some pose estimation - Transformation between - Motion estimation - Conclusion - 6 Links and bibliography ## Conclusion Images from [ASR17] Myriam Servières (ECN - AAU/CRENAU) ◆□ > ◆□ > ◆豆 > ◆豆 > ・豆 ・ り へ ○ Conclusion Images from [ASR17] Myriam Servières (ECN - AAU/CRENAU) Conclusion Images from [ASR17] Myriam Servières (ECN - AAU/CRENAU) # Conclusion #### Conclusion Images from [ASR17] Myriam Servières (ECN - AAU/CRENAU) 4□ > 4周 > 4 = > 4 = > = 40 ### Conclusion - But... pose calculation is not very accurate in the presence of fast rotation movements - ... fusion with IMMU can help! Myriam Servières (ECN - AAU/CRENAU) 40 + 40 + 45 + 45 + 5 40 A #### Outline - Camera model and calibration - Some pose estimation - 4 Motion estimation - 6 Links and bibliography #### Links - Tools for Computer Vision - ► OpenCV ► https://opencv.org (Open source) - ► OpenGV https://laurentkneip.github.io/opengv/index.html (Open source) - ► ViSP ► https://visp.inria.fr (Open source) - ► MATLAB Toolboxes ► https://fr.mathworks.com/solutions/image-video-processing.ht - Websites - Annotated Computer Vision Bibliography http://www.visionbib.com/bibliography/contents.html - ► Computer Vision conferences list ► http://conferences.visionbib.com/Iris-Conferences.htm ## (very) Useful books and tutorials Multiple View **Geometry in Computer** Vision [HZ04] From Richard Hartley, Andrew Zisserman ▶ Book site Learning OpenCV 3: **Computer Vision in** C++ with the OpenCV Library [KB17] From Adrian Kaehler and Garv Bradski ◆ロト ◆御 ト ◆ 恵 ト ◆ 恵 ・ 夕 ♀ ○ Myriam Servières (ECN - AAU/CRENAU) Myriam Servières (ECN - AAU/CRENAU) ## (very) Useful books and tutorials • E. Marchand, H. Uchiyama, F. Spindler "Pose estimation for augmented reality: a hands-on survey", IEEE Trans. Vis. Comput. Graph., 2016. [MUS16] http://people.rennes.inria.fr/Eric.Marchand/pose-estimation/index.html - D. Scaramuzza and F. Fraundorfer, "Visual Odometry: Part I -The First 30 Years and Fundamentals," IEEE Robot. Autom. Mag., vol. 18, no. 4, pp. 80-92, Dec. 2011. [SF11] - F. Fraundorfer and D. Scaramuzza, "Visual Odometry: Part II: Matching, Robustness, Optimization, and Applications," IEEE Robot. Autom. Mag., vol. 19, no. 2, pp. 78-90, Jun. 2012. [FS12] http://rpg.ifi.uzh.ch/visual_odometry_tutorial.html ## (very) Useful books and tutorials Computer Vision: **Models Learning and** Inference [Pri12] From Simon J.D. Prince. Computer Vision: Algorithms and **Applications** [Sze10] From Richard Szeliski ► http://szeliski.org/Book/ So now, if you know what you look at, you can tell me where you are. #### References I Pablo Fernández Alcantarilla, Adrien Bartoli, and Andrew J. Davison KA7F features Lecture Notes in Computer Science, 7577 LNCS(PART 6):214-227, 2012. Alexandre Alahi, Raphael Ortiz, and Pierre Vandergheynst. FREAK: Fast Retina Keypoint. 2012 Ieee Conference on Computer Vision and Pattern Recognition (Cvpr), pages 510-517, 2012. Nicolas Antigny, Myriam Servieres, and Valerie Renaudin. Pedestrian track estimation with handheld monocular camera and inertial-magnetic sensor for urban augmented reality. In 2017 International Conference on Indoor Positioning and Indoor Navigation (IPIN), pages 1-8, Sapporo, Japan, sep 2017. IEEE. Nicolas Antigny, Myriam Servières, and Valérie Renaudin. Continuous Pose Estimation for Urban Pedestrian Applications on Hand-held Mobile Device. In IPIN, page to be published, 2018, Herbert Bay, Andreas Ess. Tinne Tuytelaars, and Luc Van Gool. Speeded-Up Robust Features (SURF). Computer Vision and Image Understanding, 110(3):346-359, 2008. M. Bloesch, S. Omari, M. Hutter, and R. Siegwart, Robust visual inertial odometry using a direct ekf-based approach. In 2015 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), pages 298-304, Sept 2015. Michael Calonder, Vincent Lepetit, Mustafa Özuysal, Tomasz Trzcinski, Christoph Strecha, and Pascal Fua. BRIEF: Computing a local binary descriptor very fast. IEEE Transactions on Pattern Analysis and Machine Intelligence, 34(7):1281-1298, 2012. 4 D > 4 B > 4 B > 4 B > 90 C Myriam Servières (ECN - AAU/CRENAU) #### IPIN 2018 174 / 181 #### References III Richard Hartley and Andrew Zisserman Multiple view geometry in computer vision. 2004. Adrian Kaehler and Gary Bradski. Learning OpenCV 3: Computer Vision in C++ with the OpenCV Library. O'Reilly Media, 2017. Laurent Kneip, Paul Furgale, and Roland Siegwart. Using multi-camera systems in robotics: Efficient solutions to the NPnP problem. Proceedings - IEEE International Conference on Robotics and Automation, (2004):3770-3776, 2013. Laurent Kneip, Hongdong Li, and Yongduek Seo. UPnP: An optimal O(n) solution to the absolute pose problem with universal applicability. Lecture Notes in Computer Science, 8689 LNCS(PART 1):127-142, 2014. G. Klein and D. Murray. Parallel tracking and mapping for small ar workspaces. In 2007 6th IEEE and ACM International Symposium on Mixed and Augmented Reality, pages 225-234, Nov 2007. Stefan Leutenegger, Margarita Chli, and Roland Y. Siegwart. BRISK: Binary Robust invariant scalable keypoints. In 2011 International Conference on Computer Vision, pages 2548-2555. IEEE, nov 2011. V. Lepetit, F.Moreno-Noguer, and P.Fua. Epnp: An accurate o(n) solution to the pnp problem. International Journal Computer Vision, 81(2), 2009. References II Daniel F. Dementhon and Larry S. Davis. Model-based object pose in 25 lines of code. International Journal of Computer Vision, 15(1-2):123-141, jun 1995. Jakob Engel, Vladlen Koltun, and Daniel Cremers. Direct sparse odometry. CoRR abs/1607 02565 2016 Jakob Engel, Thomas Schöps, and Daniel Cremers. Lsd-slam: Large-scale direct monocular slam. In David Fleet, Tomas Paidla, Bernt Schiele, and Tinne Tuytelaars, editors, Computer Vision – ECCV 2014, pages 834-849, Cham, 2014. Springer International Publishing. Martin a Fischler and Robert C Bolles. Random Sample Consensus: A Paradigm for Model Fitting with. Communications of the ACM, 24:381-395, 1981 Friedrich Fraundorfer and Davide Scaramuzza. Visual Odometry: Part II: Matching, Robustness, Optimization, and Applications. IEEE Robotics & Automation Magazine, 19(2):78-90, jun 2012 Xiao-Shan Gao, Xiao-Rong Hou, Jianliang Tang, and Hang-Fei Cheng. Complete solution classification for the P3P problem. IEEE Transactions on Pattern
Analysis and Machine Intelligence, 25(8):930-943, 2003. C Harris and M Stephens. A Combined Corner and Edge Detection. In Proceedings of The Fourth Alvey Vision Conference, pages 147-151, 1988. Myriam Servières (ECN - AAU/CRENAU) IPIN 2018 175 / 181 #### References IV H. C. Longuet-higgins. A computer algorithm for reconstructing a scene from two projections Nature, 293(5828):133-135, 1981 Chien Ping Lu, Gregory D. Hager, and Eric Mjolsness. Fast and globally convergent pose estimation from video images. IEEE Transactions on Pattern Analysis and Machine Intelligence, 22(6):610-622, 2000. Perceptual Organization and Visual Recognition. Fitting Parameterized Three-Dimensional Models to Images. IEEE Transactions on Pattern Analysis and Machine Intelligence, 13(5):441-450, 1991. Distinctive image features from scale-invariant keypoints. International journal of computer vision, 60.2:91-110, 2004 R. Mur-Artal, J. M. M. Montiel, and J. D. Tards Orb-slam: A versatile and accurate monocular slam system. IEEE Transactions on Robotics, 31(5):1147-1163, Oct 2015 Philippe Martinet. Computer Vision - Visual Geometry, EMARO Erasmus Mundus Master, 2013. Hans Peter Moravec Myriam Servières (ECN - AAU/CRENAU) Obstacle avoidance and navigation in the real world by a seeing robot rover. tech. report CMU-RI-TR-80-03, page 175, 1980. IPIN 2018 177 / 181 Myriam Servières (ECN - AAU/CRENAU) 4日 → 4周 → 4 三 → 4 三 → 9 9 (*) IPIN 2018 176 / 181 #### References V A. I. Mourikis and S. I. Roumeliotis A multi-state constraint kalman filter for vision-aided inertial navigation. In Proceedings 2007 IEEE International Conference on Robotics and Automation, pages 3565-3572, April 2007. Eric Marchand, Hideaki Uchivama, and Fabie Spindler. Pose estimation for augmented reality: a hands-on survey. D. Nister. An efficient solution to the five-point relative pose problem. IEEE Transactions on Pattern Analysis and Machine Intelligence, 26(6):756-770, jun 2004 Richard A. Newcombe, Steven Lovegrove, and Andrew J. Davison. Dtam: Dense tracking and mapping in real-time. 2011 International Conference on Computer Vision, pages 2320-2327, 2011. Denis Oberkampf, Daniel F. DeMenthon, and Larry S. Davis. Iterative Pose Estimation Using Coplanar Feature Points. Computer Vision and Image Understanding, 63(3):495-511, 1996 Computer Vision: Models Learning and Inference. Cambridge University Press, 2012 Tong Qin, Peiliang Li, and Shaojie Shen. Vins-mono: A robust and versatile monocular visual-inertial state estimator CoRR, abs/1708.03852, 2017. Myriam Servières (ECN - AAU/CRENAU) IPIN 2018 178 / 181 Myriam Servières (ECN - AAU/CRENAU) IPIN 2018 179 / 181 ### References VII Jianbo Shi and Carlo Tomasi. Good features to track. In Computer Vision and Pattern Recognition, 1994. Proceedings CVPR'94., 1994 IEEE Computer Society Conference on, volume 54, page 258. IEEE, 2002. Richard Szeliski. Computer Vision: Algorithms and Applications. Johannes Lutz Schönberger, Enliang Zheng, Marc Pollefeys, and Jan-Michael Frahm. Pixelwise view selection for unstructured multi-view stereo. In European Conference on Computer Vision (ECCV), 2016. Roger Y. Tsai. A Versatile Camera Calibration Technique for High-Accuracy 3D Machine Vision Metrology Using Off-the-Shelf TV Cameras and Lenses. IEEE Journal on Robotics and Automation, 3(4):323-344, 1987. S. Urban, J. Leitloff, and S. Hinz, MLPNP - A real-time maximum likelihood solution to the perspective-n-point problem. ISPRS Annals of the Photogrammetry, Remote Sensing and Spatial Information Sciences, III-3:131-138, 2016. Xin Yang and Kwang-Ting Cheng. LDB: An ultra-fast feature for scalable Augmented Reality on mobile devices. In 2012 IEEE International Symposium on Mixed and Augmented Reality (ISMAR), volume 2, pages 49-57. IEEE, nov Joseph S.C. Yuan. A General Photogrammetric Method for Determining Object Position and Orientation IEEE Transactions on Robotics and Automation, 5(2):129-142, 1989 Lawrence Gllman Roberts. Machine perception of three-dimensional solids. PhD thesis, 1963. Ives Rey-Otero and Mauricio Delbracio. Anatomy of the SIFT Method. Image Processing On Line, 4:370-396, 2014. Ethan Rublee, Vincent Rabaud, Kurt Konolige, and Gary Bradski. ORB: An efficient alternative to SIFT or SURF. In 2011 International Conference on Computer Vision, pages 2564-2571. IEEE, nov 2011. Davide Scaramuzza and Friedrich Fraundorfer. Visual Odometry: Part I - The First 30 Years and Fundamentals. IEEE Robotics & Automation Magazine, 18(4):80-92, dec 2011. Johannes Lutz Schönberger and Jan-Michael Frahm. Structure-from-motion revisited. In Conference on Computer Vision and Pattern Recognition (CVPR), 2016. P.F. Sturm and S.J. Maybank. On plane-based camera calibration: A general algorithm, singularities, applications. In Proceedings. 1999 IEEE Computer Society Conference on Computer Vision and Pattern Recognition (Cat. No PR00149), pages 432-437. IEEE Comput. Soc, 1999. Ke Sun, Kartik Mohta, Bernd Pfrommer, Michael Watterson, Sikang Liu, Yash Mulgaonkar, Camillo J. Taylor, and Viiav Robust stereo visual inertial odometry for fast autonomous flight. CoRR. abs/1712.00036, 2017. ◆ロト ◆部ト ◆恵ト ◆恵ト ・恵 ・ 夕久(*) ## References VIII Z Zhang. A flexible new technique for camera calibration. IEEE Transactions on Pattern Analysis and Machine Intelligence, 22(11):1330-1334, 2000, Yinqiang Zheng, Yubin Kuang, Shigeki Sugimoto, Kalle Astrom, and Masatoshi Okutomi. Revisiting the PnP problem: A fast, general and optimal solution. Proceedings of the IEEE International Conference on Computer Vision, pages 2344-2351, 2013