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Definitions

Camera pose

Camera position and orientation relative to a fixed coordinate system

Computer Vision (CV)

Interdisciplinary field that study and develop techniques to enable a
computer system or artificial intelligence system to analyze and
understand visual data obtained using cameras. Computer vision

tasks include methods for acquiring, processing, analyzing and
understanding digital images.
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Camera

Pose

Ye

Camera pose

Camera position and orientation relative to a fixed coordinate system
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Why do we need the pose for?

@ Retrieving information from image

R E 7 2D location in object frame.

work from [ASR17]
@ Knowing a displacement only from a video
@ Augmented Reality
@ Reconstructing a 3D model
° ...
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Why do we need the pose for?

@ Retrieving information from image

@ Knowing a displacement only from a video

City 30 model

66685 668852 668354 668656 668658
¥ entes (M) 10

work from [ASR18]
@ Augmented Reality
@ Reconstructing a 3D model
° ...
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Why do we need the pose for?

@ Retrieving information from image

@ Knowing a displacement only from a video
@ Augmented Reality

@ Reconstructing a 3D model

Flle Processing Reconstruction Render Extras Help
DElE @B =B oier WE 3 08848 won:=HaoR
LX) s

e || Coar

3D model reconstructed with COLMAP with an example dataset [SF16, SZPF16]

» https://demuc.de/colmap/#tutorial
Pose estimation tutorial IPIN 2018 5 /181
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Why do we need the pose for?

@ Retrieving information from image
@ Knowing a displacement only from a video
@ Augmented Reality

work from [ASR17]
@ Reconstructing a 3D model

Pose estimation tutorial
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Outline

@ Camera model and calibration

IPIN 2018

© Some pose estimation algorithms with a known 3D model

© Transformation between images
@ Motion estimation

© Conclusion

Pose estimation tutorial

Myriam Servieres (ECN - AAU/CRENAU )

IPIN 2018

5/ 181

6/ 181



Outline Outline

@ Camera model and calibration @ Camera model and calibration
@ Pinhole Camera Model
@ Calibration parameters
@ Calibration methods
@ References, tools and demo
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Pinhole Camera Model Pinhole Camera Model
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Pinhole Camera Model Pinhole Camera Model

—— %

imager
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Pinhole Camera Model Pinhole Camera Model

image plane
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Pinhole Camera Model

optical center

image plane

Pinhole Camera Model

Myriam Serviéres (ECN - AAU/CRENAU )

image plane

Pose estimation tutorial

Pinhole Camera Model

virtual image plane

obiject in the world

Myriam Servieres (ECN - AAU/CRENAU ) Pose estimation tutorial
pringipal point
principal point
; optical center
optical center ~
Ze 7
optical axis
image plane virtual image plane object in the world

optical axis
Myriam Serviéres (ECN - AAU/CRENAU )

-

Pose estimation tutorial

* X,
virtual image plane
=

camera point
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Pinhole Camera Model

pringipal point

optical axis JEUUSTIS

optical center

—
T v ° X
S Ye \ X . : ¢ )
Te image point camera point

virtual image plane

@ Model of the camera's geometry
@ Distortion model of the lens

Myriam Servieres (ECN - AAU/CRENAU ) Pose estimation tutorial IPIN 2018 10 / 181

Outline

@ Camera model and calibration

@ Calibration parameters
@ Link between imaged point
and point on image
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Outline

@ Camera model and calibration
@ Pinhole Camera Model

@ Calibration parameters

@ Link between imaged point
and point on image

@ Transformations using
homogeneous coordinates

@ Extrinsic parameters

@ Camera matrix

@ Lens distortions

@ Calibration methods

@ References, tools and demo
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Link between imaged point and point on image

Perspective projection

Myriam Servieres (ECN - AAU/CRENAU ) Pose estimation tutorial IPIN 2018 13 /181



Link between imaged point and point on image

virtual image plane virtual image plane
XC XC
Xq Xq
O, /‘ " Ye O, /‘ = Te
'%L Zc zcl Zc
f f
.= Y x; = fX
yi="12 i = f=

Xi, Yi, Xe, Ye and z. are measured in the same real-world units
(e.g. mm)

Myriam Servieres (ECN - AAU/CRENAU ) Pose estimation tutorial IPIN 2018 14 /181

Focal length and photoreceptor spacing

) d)

Ze Ze
Focal length Focal length
Optical E Optical
center b center .
jyi Ry Jyi - Ray
Tmage Ye Tmage Ye
plane plane

[slightly adapted from [Pri12]]
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Focal length and photoreceptor spacing

a) b)

Ze Zc
Focal length Focal length
Field Field
of view of view
Optical Optical
center Ry center Y Ray
Yi
Image Ye Image Ye
plane plane

[slightly adapted from [Pri12]]

Camera field of view J

Total angular range that is imaged (usually different in the x- and y-directions)

Myriam Servieres (ECN - AAU/CRENAU ) Pose estimation tutorial IPIN 2018 15 / 181

Unit in pixel on the image

Rectangular pixels
e two different focal lengths : £ and f,
o f,="f.s and f, = f.s, with
f the physical focal length in the chosen real-world unit (e.g.
mm)
sx (resp. s,) the size of the individual imager elements along x
(resp. y) in px/chosen real-world unit (e.g. px/mm)

@ Only £, and f, can be derived by the calibration process

Myriam Servieres (ECN - AAU/CRENAU ) Pose estimation tutorial IPIN 2018 16 / 181



Representation in homogeneous coordinates

® Xc = [xc; ¥e, 2] " correspond to x;, = [u,v]" = [f %=, f,2]T
@ non-linear operation (/z.) — perspective projection
@ Use homogeneous coordinates to get a linear form (add one

dimension).
X
y u Xc ¢
— |v| and |y.| = |¥°
v 1 z ©
N 1
@ conversion from homogeneous coordinates
X
u x/w
u/w y
v — and — |y/w
v/w z
w z/w
w
Myriam Servieres (ECN - AAU/CRENAU ) Pose estimation tutorial IPIN 2018

Offset and skew parameters

@ Principal point p is not at [0,0]” in F;
e Point [0,0]7 is at upper-left corner and p = [uo, vo]”

17 / 181

_ f X Y
u-ﬁ(zc+u0 J V—fyzc+V0
“@
Py Pixel
o PiXeIS may haVe a SkeW faCtOI’ S Px (©Mathworks source
_ f XctS.y — f Ye
u_f;(Cch+u0 J V_fyzC+V0

Pose estimation tutorial IPIN 2018
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Representation in homogeneous coordinates

@ Using homogeneous coordinates

_U_fx)z(—z
v_fy}z%

can be expressed in a matrix form

u f. 0 0] [x. u
vl = z—lc 0 f Of [ye| orA|v| =
1 0 0 1] |z 1

with A a scale factor

Pose estimation tutorial
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Offset and skew parameters

@ Full pinhole camera model in a matrix form

u . s ul| |xc

Av =10 £, w| |y

1 0 0 1| |z
(linear!)

Pose estimation tutorial

Myriam Servieres (ECN - AAU/CRENAU )

O O xh
oO<h O
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Intrinsic parameters matrix

fc s
K=1]0 f;, Vo
0 0 1

Pose estimation tutorial
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2D translation

IPIN 2018

P=1[xy]" = [x,y,1]"
t=[te, t,]7 = [t ty, 1] 7

X+t 10
P =ly+t| =101
00

Myriam Servieres (ECN - AAU/CRENAU )

Pose estimation tutorial

1

A :
P = 01
P=T.P
2D.o.F

=St

IPIN 2018
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Outline

@ Camera model and calibration

o Calibration parameters

@ Transformations using
homogeneous coordinates
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2D scale change

P=loyl” =[xy, 107
P’ = [se.x,5,.y]" = [se.x,5,.y,1]T

Sy.X s 0 0f |x
/ __ —
) P =|s.yl=10 s 0| |y
P 1 0 0 1] |1
P s 0
P = P=SP
01
Myriam Servieres (ECN - AAU/CRENAU ) Pose estimation tutorial IPIN 2018 24 /181




2D scale change and translation

P'=TP =TSP

note: T.S.P#S.T.P

pP” S X + ty
TSP=|s.y+t,| and
P 1
Se.X + 5.ty
ST.P=|s.y+s,.t,
1

Myriam Servieres (ECN - AAU/CRENAU ) Pose estimation tutorial IPIN 2018 25 /181

2D similarity

@ Similarity = scale (with s, = s, )+ rotation + translation

1 0 t,| |[cos@ —sinfd 0| [s O Of [x
P'=10 1 t,| |sinf cos§ O [0 s Of |y
001 0 0 {10 0 1] |1

, _[Rs t]|*
P‘[o 1]{

Myriam Servieres (ECN - AAU/CRENAU ) Pose estimation tutorial IPIN 2018 27 / 181

2D rotation

cos —sinf 0] |x
P'= |sinf cosf Of |y
0 0 1] |1

1 D.o.F.

Myriam Servieres (ECN - AAU/CRENAU ) Pose estimation tutorial IPIN 2018 26 / 181

2D transformation summary

Y A similarity Q projective
translation
—r
N
Euclidean A{l 4

Extracted from [Szel0].

Myriam Servieres (ECN - AAU/CRENAU ) Pose estimation tutorial IPIN 2018 28 / 181




2D transformation summary

. transformed . .
type D.o.F. matrix invariants

square
T T2t
Tl T2ty

0o 0 1

Euclidean 3 lengths, angles, parallelism, straight lines

Similarity 4 angles, parallelism, straight lines

5711 8112 g
S$ro1 STty
il

ay ap te
Affine 6 az  azx parallelism, straight lines
0o 0 1
hir hiz iz
Projective 8 hay hay  hog straight lines

har ha2 hss u

Adapted from [Szel0, HZ04]

Pose estimation tutorial IPIN 2018 28 /181
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3D rotation

Counter-clockwise rotation around coordinate axes

z
e’
1 0 0
. R.(a) = |0 cosa —sina
TN g 0 sina cosa

Pose estimation tutorial IPIN 2018 30 /181
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3D translation

Pose estimation tutorial
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3D rotation

Counter-clockwise rotation around coordinate axes

z
\ P 10
R.(a) = |0 cosa
|0 sina

3 [ cos3 0
Lol RG=| 0 1
g | —sing3 0

Pose estimation tutorial

Myriam Servieres (ECN - AAU/CRENAU )

IPIN 2018

0
—sina
CoS (v

sin 3]
0

cos 3]

IPIN 2018
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3D rotation

Counter-clockwise rotation around coordinate axes

1 0 0
o R(a) = |0 cosa —sina
L 0 sina cosa
4 ::‘ ,y - -
[ cos3 0 sinf3]
e R(@B)=1] 0 1 0
Ty | —sin3 0 cosf|
Yy [cosy —siny 0]
v . R,(y) = |siny cosy O
e 0 0 1

o L |

Pose estimation tutorial IPIN 2018
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3D transformation summary

transformed
cube

type D.o.F. matrix invariants

Euclidean 6 lengths, angles, parallelism, straight lines
T31 T2 T3z t.

T2 713 te
T2l T2 T3ty
0o 0 0 1

[s.r11 S.712 8713 ta]
S.T21 S.ra2 8.2y ly
8.r31 8.3y 833 1l
L O 0 0 1]

Similarity 7 angles, parallelism, straight lines

Affine 12 parallelism, straight lines

straight lines
hai hsa haz hsa s

hir hiz hiz g
Projective 15 har hay has hoa
hai has haz hay

[an1 a2 a3 ]

az  az a3 ty ﬁ
a3y asy azz t:

lo 0o o 1]

Adapted from [Szel0, HZ04]

Pose estimation tutorial IPIN 2018
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3D rotation

X
R 0 .
p = Y1 with R = R,(7)R,(8)Re(c) or
01 z
4x4
1
cosffcosy sinasinfcosy — cosasiny cosasin [3cosy + sinasinsy
R = | cosfsiny sinasinf3siny + cosacosy cosasinfsiny — sin «cos-y
—sinf8 sin v cos 3 cos a cos 3

ni n»2 ns
Simplified notation : R= |1 oy mn3
k31 I3z 33

Reminder : RTR=RR" = |

Pose estimation tutorial IPIN 2018 31 /181
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Outline

@ Camera model and calibration

@ Calibration parameters

@ Extrinsic parameters

Pose estimation tutorial IPIN 2018 33 /181
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Extrinsic parameters Extrinsic parameters

What we want: What we have:

O ze 0 ze ot b v}
Ye
F. F. 2l
Image plane Image plane
\Zw
/r‘,
b Ou f,
u . s ul| |xc
AMv| =10 £, w| |y
1 0 0 1] |z
Myriam Serviéres (ECN - AAU/CRENAU ) Pose estimation tutorial IPIN 2018 34 /181 Myriam Servieres (ECN - AAU/CRENAU ) Pose estimation tutorial IPIN 2018 34 /181

Extrinsic parameters Extrinsic parameters
What is missing:
What is missing: [ .
1 | . 2y x B
L 4 Fe N '
ycl<§ ‘ Xi P Image pi
]:1» Yi

Yuw Ow F,

Position and orientation of the camera frame F,

Yo Ou g, in the world frame F,,.

Position and orientation of the camera frame F,

. X, r g r t X
in the world frame F,. yc r11 r12 r13 tX yW
c| _ 21 22 23 y w
Z Ry 2 3 ot | zZw

1 0 0 o0 1 1
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Extrinsic parameters
What is missing:

Ouw
Yo Fu

Position and orientation of the camera frame F.
in the world frame F,,.

Xe Xw

ye| [R t| |yw . Rt o .
Z - {0 1] 2., with {0 1 extrinsic parameters matrix.
1 1

Myriam Servieres (ECN - AAU/CRENAU ) Pose estimation tutorial IPIN 2018 34 /181

Camera matrix

Finally we get :
u X
R t| |yw
Av] =Kl 0] {0 J ,
! 1

Myriam Servieres (ECN - AAU/CRENAU ) Pose estimation tutorial IPIN 2018 36 / 181

Outline

@ Camera model and calibration

o Calibration parameters

@ Camera matrix

Myriam Servieres (ECN - AAU/CRENAU ) Pose estimation tutorial IPIN 2018 35 /181

Camera matrix

O. ze
—————————————————————————————————————————— - @@ @
ycl<x: i X.
Yi
All the 3D points on the same line passing through x; have the same
image point.

Myriam Servieres (ECN - AAU/CRENAU ) Pose estimation tutorial IPIN 2018 36 / 181



Camera matrix

X
u

R t] [y

AMv| =K [l 0] {0 J ,

! 1

@ )\ is a scale factor.
R t
OP:K[|3X3 0] |:0 1

e K5DoF.and R3D.o.F.,t3D.o.F.
= 11 D.o.F. in total (+1 for the scale)

Myriam Serviéres (ECN - AAU/CRENAU )
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Lens distortions

@ Real-world cameras are not
pinhole: use of lenses

@ Lenses introduce distortions:

» Radial distortions
» Tangential distortions

Myriam Serviéres (ECN - AAU/CRENAU )

Pose estimation tutorial

Outline

@ Camera model and calibration

o Calibration parameters

] = K[R|t] is the camera matrix.

@ Lens distortions

IPIN 2018 36 / 181
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Lens distortions - Radial distortion

1 \ 7
Negative radial distortion Nodistortion Positive radial distortion
“pincushion” "barrel”

(©Mathworks source
Xtinal = X(1 + ky * r? + ky % r* + ks * r®)
Veinal = Y(1 + ky % r? + ko % r* + ks * r°)

with ki, ko, k3 distortion coefficients and r distance to optical center

Note: This distortion is implemented after perspective projection but before the

effect of the intrinsic parameters so the warping is relative to the optical axis and

not the origin of the pixel coordinate system.
Myriam Servieres (ECN - AAU/CRENAU )
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Lens distortions - Tangential distortions Qutline

Zero Tangential Distortion Tangential Distortion
Lensand sensor are parallel Lens and sensor are not parallel
L . @ Camera model and calibration
@ Pinhole Camera Model
Vertical pl Vertical pl . .
B A e Calibration parameters
o Calibration methods
@ Principle
IES;?;‘E?’ i @ A linear method: Direct
sensor .
Linear Transform (DLT)
(©Mathworks source @ From P to K, Rand t
B 2 9 . .
Xfinal = X + [2p1y 4 Pz(f 4 2x )] o ’l,\lon linear appr:f)ach prmuple
_ 2 19,2 ) @ " Gold standard” algorithm
Yinal = ¥ + [p1(r® + 2y?) + 2pox]

@ References, tools and demo
with p;, po tangential distortion parameters.
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Qutline Linear approach principle

Tw3
Xus | Yws To
Zu3 Xz | Yuw2
Zw2

@ Camera model and calibration

@ Calibration methods

O, Re -~ .- - J Tyl
@ Principle e * Xun ym}
% =[]
Knowing 3D points X,, and their corresponding points in the image
Xi,
P-n-P: Perspective-n-point
o Estimate P

@ Extract K, R and t from P

Myriam Servieres (ECN - AAU/CRENAU ) Pose estimation tutorial IPIN 2018 42 /181 Myriam Servieres (ECN - AAU/CRENAU ) Pose estimation tutorial IPIN 2018 43 /181




Linear approach principle

T3
Xus | Yws Lo
Zw3 Xug | Yu2

Zw2

How many corresponding points are needed?
o P=K [ 0 ollo 1|3 12 entries and 11 D.o.F. (ignoring
the scale)

@ each correspondence point leads to 2 eq.
= b5 correspondences + 1 eq. are needed: 6 correspondence

points

Pose estimation tutorial IPIN 2018 43 /181
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Outline

@ Camera model and calibration

@ Calibration methods

@ A linear method: Direct
Linear Transform (DLT)

Pose estimation tutorial
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Direct Linear Transform: x; <+ X,,

Xi
@ Considering P3y4 and x; = |y;| a point in the image
Zj
X
corresponding to a 3D point X,, = Yw
1

e x; = PX, for all corresponding points
@ We have the linear relationship:

x; x PX,, = 0 (with x cross product)

Myriam Serviéres (ECN - AAU/CRENAU ) Pose estimation tutorial IPIN 2018
Direct Linear Transform: x; x PX, =0
P1
o writing P = | P,| with P; a 4-vector of the i-th row of P
Ps
P’ - X,
@ then PX, = PZT - X
P - X,
Xj P]T . XW
e and x; x PX,, = |yi| x |PS - X,
IPIN 2018

Pose estimation tutorial
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Direct Linear Transform: x; x PX, =0

@ X; X PXW =0

@ Developing it:

[ X,'P2TXW — y,'PlTXW
—x;Py X, +zP{ X,,| =0
| y,'P3TXW — Z,'PQTXW

e As P X, = XTP;:

[ X,'XVZ-P2 - y:XVz—Pl
—X,'XMZ—P3 + Z,'XVZ-Pl =0
L levZ—P3 — Z,'XVZ-P2

@ and writing in a matrix form:

[0 —ZinZ )/iX.; P
Z,'XMZ— 0 —X,'XVZ_ P2 =0
—yiXy  xiX[) 0 P3

Myriam Serviéres (ECN - AAU/CRENAU ) Pose estimation tutorial IPIN 2018 47 /181

Direct Linear Transform: determination of P

@ Staking all eq. for each correspondence point leads to:
Ap = 0 with A matrix of eq. coefficients built from the matrix
rows A; and p and 12-vector made up of the entries of the
matrix P

@ Obtain the SVD of A. The unit singular vector corresponding to
the smallest singular value is the solution of p.
Specifically, if A= UDVT with D diagonal with positive
diagonal entries, arranged in descending order down the
diagonal, then p is the last column of V.

@ P is then given by p

[DLT algorithm from [HZ04]].

Myriam Servieres (ECN - AAU/CRENAU ) Pose estimation tutorial IPIN 2018 49 /181

Direct Linear Transform: determination of P

o the 3 rows are linearly dependent

0 —Z,'XVZ_ lemz— Pl
Z,'XMZ— 0 —X,'XVZ_ P2 =0
_—y,'X‘Z,— Xl'Xv?/— 0 P3

@ So we choose only the 2 first ones

0 —ZiXVZ- inMZ—:| i«

zZXT 0 —x; XTI P =0
L<! 7w 17w P3

@ this will be written

A;p = 0 with p a 12-vector made up of the entries of P.

@ note: The eq. hold for any homogeneous representation of x;.

. X; , ,
Choosing z; = 1, then [ "| are coordinate on the image
i
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Direct Linear Transform: determination of P

@ Minimal solution

Given 6 correspondences, the solution is exact.

The solution is obtained solving Ap = 0 where A is 11 x 12.

In general A will have rank 11, and the solution vector p is the
1-dimensional right null-space of A.

Over-determined solution

If data are not exact (noise) and n > 6 — not an exact solution
to Ab = 0.

Then the estimation of P may be obtained by minimizing an
algebraic error with the normalization constraint ||p|| =1

[From [HZ04]].
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DLT: points normalization Direct Linear Transform complete algorithm [HZ04]

@ DLT is not invariant to similarity transformations (details in
[HZ04])
= apply a normalizing transformation to the data before
applying the DLT algorithm

Objective:
Given n > 6 world to image point correspondences X,, <> X;,
determine the camera projection matrix P such as x; = PX),

@ Normalization for 2D points: Isotropic scaling Algorithm
> points are translated so that their centroid is at the origin.
» points are then scaled so that their root-mean-square distance

from the origin is equal to V?2

@ Normalization of x;: Compute a similarity transformation T,
consisting of a translation and scaling, that takes points x; to a
new set of points X; such that the centroid of the points X; is the
coordinate origin [0,0]", and their average distance from the

origin is \/§

@ Normalization for 3D points - case with small variations in
points depth
» centroid of the points is translated to the origin
» coordinates of the points are scaled so that their
root-mean-square distance from the origin is v/3
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Direct Linear Transform complete algorithm [HZ04] Direct Linear Transform complete algorithm [HZ04]
Objective:
Given n > 6 world to image point correspondences X,, <> X;,
Objective: determine the camera projection matrix P such as x; = PX,,
Given n > 6 world to image point correspondences X,, <> X;, Algorithm
determine the camera projection matrix P such as x; = PX,,

_ @ Normalization of x;: Compute a similarity transformation T
Algorithm . S :
S @ Normalization of X,,: Compute a similarity transformation U

© DLT:

@ For each correspondence X, > X; compute the matrix A;. Only

@ Normalization of x;: Compute a similarity transformation T

@ Normalization of X,,: Compute a similarity transformation U,

consisting of a translation and scaling, that takes points X,, to a the first two rows need be used in general.

new set of points X,, such that the centroid of the points X, is @ Form the 2n x 12 matrix A by stacking the equations generated

the coordinate origin [0,0,0]", and their average distance from by each correspondence Xy, < ;.

the origin is V3. © Write p for the vector containing the entries of the matrix P. A
solution of Ap = 0, subject to ||p|| = 1, is obtained from the
unit singular vector of A corresponding to the smallest singular
value.
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Direct Linear Transform complete algorithm [HZ04]

Objective:
Given n > 6 world to image point correspondences X,, <> X;,
determine the camera projection matrix P such as x; = PX,,
Algorithm
© Normalization of x;: Compute a similarity transformation T
© Normalization of X,,: Compute a similarity transformation U
© DLT: Compute p from A then get P
© Denormalization. The camera matrix for the original
(unnormalized) coordinates is obtained from P as :

P=T"'PU

Note: an implementation for leaning purposes can be found at

» http://people.rennes.inria.fr/Eric. Marchand /pose-estimation /tutorial-pose-dlt-opencv.html
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Extraction of the extrinsic and intrinsic parameters

Having P:

P=K[ls; 0] {'g ﬂ

We can write:

P11 P12 P13 P14 fc s U ni n2 ns t
P=|pa p2 ps pa|=|0 f w R rn 3 b
P31 P32 P33 P3a 0 0 1 r1 rp ra ta
Then:
fxrin + sr1 + ugrsy  fxri2 + sro + uors2  fxriz + sr3 + uorss  fxty 4 sto + upts
P= fyr1 + vorsy fyro + vorao fyrs + vr33 fyto + vot3
rai r32 r33 t3

[From [Mar13]]
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Outline

@ Camera model and calibration

@ Calibration methods

@ FromPto K,Rand t
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Extraction of the extrinsic and intrinsic parameters

P21 P22 P23 P24
P31 P32 P33 P34

furi1 +sr1 + uorsy firio + sr +uors2 friz + s34+ worss fity + sty + wots

|:P11 p12 P13 p14]

fyra1 + vor31 fyra + vor32 fyr3 + vor33 fytr + vot3
r31 r32 r33 t3
leads to:
__ _p3i N
o =2 fori=1,23
307 Tlpaill v
@ t3= P34
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Case s = 0: get intrinsic parameters

forin + Uprs1 ferio + ugrsy  feriz + tprss fity + upts
fyro1 +vorsi fyro +vorsa 3+ vorss f,t + wts

31 32 33 t3

-P11_ -P31- -P11_ -P31_
Up = [P12]| - [ P32 f = P12| — Up - | P32

| P13| | P33] | P13 | | P33 |

-P21_ -P31_ -P21_ _P31_
Vo= | P22| * | P32 fy =1 |P22| —VYo- |P32

| P23 | | P33 | P23 | | P33 |

[From [Mar13]]
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Case s # 0

furi1 +sr1 + uorsy  furia +sra +uors2 fiuriz + sr3 + ugrss fty + sty + uots

P= fyr1 + vorat fyra + vors2 fyra3 + vor33 fyta + wot3
r31 32 r33 t3
P11 P31
_ P11 P31
Up = | P12| * [P32 £ —
x = P12 —Uo- | P32
| P13| | P33]
b P13 P33
P21 P31 1 - -
Vo= | P2| - |P32 m| = ||p2| v |P2|| ¢
r3 P23 P33
| P23 | P33 /
v
and we still have r; and ts.
[From [Mar13]]
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Case s = 0: get extrinsic parameters

forin + uprsy ferio + ugrsy feriz + Uprss fiety + Ugts
fyr1 + w1 fyro + vorsa  frs + vorsz f b + vt
31 3 33 ts

—
o e
w N =
(b
I
| —
—
T T T
223
w N =
| I

|

IS

o
—
I3
w N =
| I
[
D=
—
ol
w N =
| IS

Il
—
Y _1
EE
[hadiihan

I

S
—
33
w N =
[hadihan
[
=

_ P1a—Uo-t3 _ paa—Vvots
h="7% | =% J
Notes: we must ensure ||r;|| = 1 with r; i-th column of R and we are

not sure that s =r X n

[From [Mar13]]
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Case s # 0

P= fyr1 + vora; fyro + vor fyr3 + vr33 fyto + wots

feri1 +sra1 + uor3y  fxria +smo + uorsa  firi3 +sr3 + uprss fiety + sty + uots
31 3 r33 t3

— _Pr
rh =
27 el
n=nrnrxXrnn
v 71
fe _|n1 m™m | P11 — Uof31
t, = Pu—vots S rz o2 P12 — Uol32
f,
H = p1a—up-t3—s-t>
1= fe

[From [Mar13]]
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Outline

@ Camera model and calibration

@ Calibration methods

@ Non linear approach principle
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Non linear approach principle
Suppressing the scale factor, we can write:

|:X':| |:f nixw+r2yw+nszw+ti
1 J—

r31Xw+r2yw+r3zw+ts
Vi nRiXw+r2yw+mn3zw+ts
1

r31Xw+r2yw+r3zw+t3

. Xi| . . .
Expressing [y] in pixels coordinates:

X = (u+ex—up) . dO

x

Sx
o (vtey—w)
Yi = Sy d y

@ e, 6,0 measurement errors on Xx;, y;
@ s.,s,: imager size along x and y
@ dy,,do,: distortions

[From [Mar13]]
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Non linear approach principle

X
Consider the projection of a 3D point X,, = |y, | onto a 2D point
ZW
Xj
X; = |yi| with z; = f (the focal length):
Zj
Xi Xw
Yi| = )\i R Yw| + t
Zj Zy

with :
@ R the rotation matrix
@ t the translation vector

@ )\; a scale factor
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Non linear approach principle

X

[Xi:| B |:fr11Xw+r12}/w+r13zw+t1:| (utex—uog) dO

r31Xw+r32yw+r3zw-t3 Sx
: R1Xw+royw+r3zw+ts (v+ey—vo) d
Yi rren) _ g,

r31xXw+r2yw+rzzw+ts

We can express:
utel [P(®)
vte| QP
with ® = [an Vo, kla k2) k3a P1, p2, fX) f;u tly t2, t3a O[,ﬁ,’}/]T als

parameters vector where (a, 3,v)" parametrize the orientation.
[From [Mar13]]
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Non linear approach principle

e [P(®)—u e
Then H - [ AN } = V(0) = H
We must find ® which minimizes the reprojection error S:

e if 1 image and n correspondence points:

S= Z(efi +e)
i=1

e if m image and n correspondence points on each image:

m n
S= Z Z(ei,-j + eﬁij

j=1 i=1

[From [Mar13]]
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Non linear approach principle

ex P(®) —u ex
Then: = = V() =
= [o] = Lo -] = @ - [¢]
We must find ® which minimizes the reprojection error S:
Note: An implementation for learning purposes of a pose estimation

using Gauss-Newton can be found at

» http://people.rennes.inria.fr/Eric. Marchand /pose-estimation /tutorial-pose-gauss-newton-opencv.html

[From [Mar13]]
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Non linear approach principle

e [P(®)—u e
Then: [ey] N {Q(d)) - V] = V(®)= [ey]
We must find ® which minimizes the reprojection error S:
e if 1 image and n correspondence points: S =7 ;(eZ +e;)

e if m image and n correspondence points on each image:

S= ZJm:1 Z7=1(e§,-j + e}%ij

Non-linear optimization problem! J

That can be solved using algorithm as Gauss-Newton or
Levenberg-Marquardt.
[From [Mar13]]
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Outline

@ Camera model and calibration

@ Calibration methods

@ " Gold standard” algorithm
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" Gold standard” algorithm [HZ04]

Objective

Given n > 6 world to image point correspondences X,, <> X;,
determine the Maximum Likehood estimated of the camera
projection matrix P, i.e. the P which minimizes ). d(x;, PX,)
> d(x;,PX,) is the geometric error in the image.

Minimizing geometric error require the use of iterative techniques (as

Levenberg-Marquardt).
If the measurement error are Gaussian then the solution of

min Z d(x;, PX,)

is the Maximum Likelihood estimate under P.

DLT solution (or a minimal solution) is used as a starting point for

the iterative minimization.

[From [HZ04]

Pose estimation tutorial
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" Gold standard” algorithm [HZ04]

Objective
Given n > 6 world to image point correspondences X,, <> X;,
determine the Maximum Likehood estimated of the camera
projection matrix P, i.e. the P which minimizes > . d(x;, PX,)
© Linear Solution Compute an initial estimate of P using
previous linear method.
@ Minimize geometric error Using the linear estimate as a
starting point minimize the geometric error

> d(%,PX,)

over P, using an iterative algorithm such as
Levenberg-Marquardt.
© Denormalization The camera matrix for the original
(unnormalized) coordinates is obtained from P as
P=T7'PU

IPIN 2018

" Gold standard” algorithm [HZ04]

Objective
Given n > 6 world to image point correspondences X,, <> X;,
determine the Maximum Likehood estimated of the camera
projection matrix P, i.e. the P which minimizes ). d(x;, PX,)
@ Linear Solution Compute an initial estimate of P using
previous linear method.

@ Normalization Use a similarity transformation T to normalize

the image points X;; = Tx;, and a second similarity
transformation U to normalize the space points X = UXy
@ Apply DLT algorithm
@ Minimize geometric error Using the linear estimate as a
starting point minimize the geometric error

> d(x,PX,)
i
over P, using an iterative algorithm such as

evenberg rg
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Pose estimation tutorial

Outline

@ Camera model and calibration
@ Pinhole Camera Model
@ Calibration parameters
@ Calibration methods
@ References, tools and demo
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References Tools

@ OpenCV (Opensource)
) OpenGV » https://laurentkneip.github.io/opengv/index.html

Presented methods where proposed by Roberts [Rob63], Tsai o ViSP (Opensource)
[TsaSY], Lowe [Low85, Lowg]_]’ Yuan [Yua89] and Zhang [ZhaOO] [~ MATLAB Toolboxes » https://fr.mathworks.com /solutions/image-video-processing.html

(a mo ng ot h e rs) . » http://www.vision.caltech.edu/bouguetj/calib_doc/

@ Omnidirectional Calibration Toolbox
» http://www.robots.ox.ac.uk/€mei/Toolbox.html#download

Pose estimation for augmented reality: a hand-on survey [MUS16]

Codes and explanations » http://people.rennes.inria.fr/Eric.Marchand /pose-estimation /index.html
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Calibration with a chessboard Summary on perspective projection

Any appropriately characterized object could be used as a calibration
object
= practically: use of regular pattern as a chessboard

Rq.: The specific use of this calibration object and much of the i
calibration approach itself comes from [Zha00] and [SM99]

Demo: openCV calibration example code imagepne
In the yml file, you will find the camera matrix

[£,0, 10,0, f,,v,0,0,1] and the distortion coefficients

[k1, k2, p1, P2, k3]
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Summary on perspective projection

Oc Zzc

Te

i

— ] [
Fe
Image plane

Image virtual plane

Summary on perspective projection

O ZC,_.,«.,..,_.,A .
R,t

Te

Fe
Image plane
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Summary on perspective projection

distortions, K

Oe Zc_"_"_" I - .
SR
Te
2

Image plane

Y 0w g,

=] =3
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© Some pose estimation

algorithms with a known 3D
model
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Summary on perspective projection
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Outline

© Some pose estimation

algorithms with a known 3D
model

e P3P
@ POS and POSIT [DD95]

@ EPnP algorithm [LFNP09]
@ Others EPnP algorithms
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P3P : pose estimation with the smallest P3P : pose estimation with the smallest

correspondence subset correspondence subset
@ Estimation of the unknown depth of each point (in F.):
B » Use of triangles O.AB, O.BC and O.AC and the law of
cosines:
0.4 = X Y2+ 7% —2YZcosa— |BC[* =0
0.B|=Y 7% 4+ X? —2ZX cos f — |AC]2 =0
0:Cl =2 X2+ Y2 —2XY cosy — |AB]2 =0
Most of the P3P approaches rely on a 2 steps solution: » Solve a fourth order polynomial equation (example in
e Estimation of the unknown depth of each point (in F.) [GHTCO3])

. . . . ) — up to 4 four possible solutions
e Estimating the rigid transformation that maps the coordinates

. : . e Estimating the rigid transformation from F. to F,
expressed in F. to the coordinates expressed in F, & & c v

Necessity to have a 4th point to disambiguate the results.
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Outline POS and POSIT [DD95]: overview of the problem

Notations:
@ O center of projection
e M,
@ (i,j, k) the camera frame TS M, ®
Ao o
o f focal length ; S
o G the image plane S S e,
© Some pose estimation ' S

@ C the central point
algorithms with a known 3D niral pomn

model Hypothesis:

e P3P @ pinhole camera model

@ POS and POSIT [DD95] @ n non coplanar 3D points:
@ EPnP algorithm [LFNPO09] My, My,... M,

@ Others EPnP algorithms

@ mg, my, ...m,: perspective fl
projection in image plane of .
the corresponding 3D points
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POS and POSIT [DD95]: overview of the problem

Notations:
o F,: object frame as My origin
. z
with (u, v, w) W\ M,
3
\ ®
U,' \\ -
e M= 1|V,| inF, w 77
W. ]\/IU‘ v
i WA
Xi| . . Tso
o m; = in the image plane S~
i s
Hypothesis: R B SE—
@ the shape of the object is C..\&fy
. . i we .
known = M; coordinates in fl i
T, e >
F, are known - -
We want to retrieve [X;, Y;, Z;]"
coordinates of M; in F,
Myriam Servieres (ECN - AAU/CRENAU ) Pose estimation tutorial IPIN 2018 76 / 181

POS and POSIT [DD95]: Compute R, t

R
Iy, Iy Iy ir
R = ju .jv jw = j_T
ke kv ku KT

only need to compute iﬁ,thhen
k=1ixj
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POS and POSIT [DD95]: overview of the problem

@ K: plane parallel to image
plane G containing My at Z;
from F.

@ Problem: compute R, t
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POS and POSIT [DD95]: Compute R, t

t
Given by OMy:

and O, Mo and M, aligned:
t= %Omo
Then to get t, only Zp is missing.
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POS and POSIT [DD95]: Compute R, t POS and POSIT [DD95]: Compute R, t

@ Scaled orthographic
projection (SOP):
» an approximation to true
perspective projection
» consider an object that we
can consider all points
with the same depth

The object pose is fully defined
once we have /,j and Z,.

@ SOP vs. Perspective
projection (PP):

SOP PP
M,‘:}P,'ﬁp,' M,-:>m,-
pi = (x,y))" mi = (xi, yi) "
X Y] _(£fXi £Y;
Pi:(f707f70 T mi—(fz,fz)-r
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POS and POSIT [DD95]: Compute R, t POS and POSIT [DD95]

@ SOP scaling factor: s = ZLO

@ Known coordinates of I\/I(;M,-
@ My projects on mg with SOP \ M; and mgm;
and PP ' e Unknown: 7, and Z,
We can write:

@ Links between known and

o= N KXot X unknown:
Tz Zo
Tl MO_’M/' : ?7: xi(1+€) —x
And deduce: R
M, M,' = = i 1 i)—
X,'/:X0+5(Xi_X()) 0 ZO.I .y( +6) yo
yi =yo+s(Y;i— Yo) - o
with ¢; = ZLM()M,' -k

[demonstragion in [DD95]]
and: nﬁ'op; = ZLOMOPI

Myriam Servieres (ECN - AAU/CRENAU ) Pose estimation tutorial IPIN 2018 77 / 181 Myriam Servieres (ECN - AAU/CRENAU ) Pose estimation tutorial IPIN 2018 77 / 181




POS and POSIT [DD95]: Compute R, t
Re-writing:

MO-)M,' . r: X,'(]. + 6,') — X0

Mo M; - J= yvi(l+€)—y

with
- L7
2y
Lf o
J=1;
7,

So if give values to ¢; = linear

x
system with two unknowns / and
J
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POS and POSIT [DD95]: POSIT algorithm

POSIT algorithm: POS with 6 =0
iterations 2
- - . \ M;
@ Solve i/ and j then estimate ¢; LI ,
Measurements €(0)=0 -

Il=1+1

Solving [, .J

Computing 7, 7, ZO

‘ Computing pose H Pose
1

lei(1) — €i(1+1)| > threshold
-

Gl) = 5o Mol -

[From [Mar13]]
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POS and POSIT [DD95]: POS algorithm

POS algorithm: Pose from
Orthography and Scaling

@ Give an approximate value to
€i

@ Solve linear system with
unknowns / and J

o Get /jf, k with
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POS and POSIT [DD95]: POSIT algorithm

e Extended to coplanar feature points in [ODD96]

@ Note: an implementation of POSIT for leaning purposes can be
found at

» http://people.rennes.inria.fr/Eric.Marchand /pose-estimation /tutorial-pose-dementhon-opencv.html
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Outline EPnP algorithm [LFNPOQ9]

@ non-iterative solution to the PnP problem applicable for all n > 4
@ handles both planar and non-planar configurations

@ n 3D points coordinates expressed as a weighted sum of four

o virtual control points
9 Some pose estimation

algorithms with a known 3D @ pose problem : estimation of the coordinates of control points in
model Fe

e P3P @ can be done in O(n)

e POS and POSIT [DD95] » expressing these coordinates as weighted sum of the

e EPnP algorithm [LFNPOQ9] eigenvectors of a 12 x 12 matrix

@ Others EPnP algorithms » solving a small constant number of quadratic equations to pick

the right weights
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EPnP algorithm [LFNPQ9]: Parameterization in EPnP algorithm [LFNPQ9]: The Solution as

the General Case Weighted Sum of Eigenvectors
@ p;,i=1,...,n: the n points whose 3D coordinates are known in ® Xxjj_1,., the 2D projections of the p;;_; _, reference points:
Fu 4
@ ¢j,j=1,...,4: the 4 control points coordinates in F, Vi, A {1’] = Kpf = Kzaijcf
(] Jj=1
4 4
pr = ajc withy a;=1 o with ¢f = [xf, yf, z7]" and x; = [uj, vi]":
=t = _ _ u; fi 0 u| 4 i
where the o are homo.geneous baryce4ntr|c coordinates. Vi vl =10 £ w Zal_j %
o Can also be expressed in F.: pf = ZFI oz,-jcjc 1 0 0 1| j=1 ch
@ In theory the control points can be chosen arbitrarily, but for
stability reason: » The unknown parameters of this linear system are the 12
» taking the centroid of the n reference points as one control point coordinates {(xj",yf,zjc)}j:LmA and the n
» select the others in such a way that they form a basis aligned projective parameters {)\zli}jzl,...,n-
with the principal directions » last row implies \; = ijl ozt
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EPnP algorithm [LFNPOQ9]: The Solution as
Weighted Sum of Eigenvectors

@ Substituting A; expression in the first two rows gives two linear
equations for each reference point:

4
C Cc
g afex; + aj(uo — uj)zf =0

=1
4
c (o
> aifyyf + (v — vi)zf =0
=1

@ )\; does not appear anymore in those equations
@ concatenating them for all n reference points give a linear
system: Mx = 0 where
» x=[cfT, 5T, 5T, csT]T is a 12-vector made of the unknowns
» M is a n x 12 matrix generated by arranging the coefficients of

the two last equations for each reference point
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EPnP algorithm [LFNPQ9]: Choosing the Right
Linear Combination

o the effective dimension N of the null space of MTM can vary
from 1 to 4 depending on the configuration of the reference
points, the focal length of the camera, and the amount of noise

@ compute solutions for all four values of N and keep the one that
yields the smallest reprojection error

res = Z d? (K[R|t] (”17”) ,x,-)

with d(3, b) the 2D distance between point a expressed in
homogeneous coordinates, and point b.
Note: Details on the 4 cases are given in [LFNP09]
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EPnP algorithm [LFNPOQ9]: The Solution as
Weighted Sum of Eigenvectors

Solving Mx =0
@ the solution therefore belongs to the null space of M, and can

be expressed as
N
X = E Bivi
i=1

where the set v; are the columns of the right-singular vectors of
M corresponding to the N null singular values of M
@ they can be computed as the null eigenvectors of matrix M M

» MTMis 12 x 12
» Computing MTM has O(n) complexity
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EPnP algorithm [LFNPQ9]

@ non-iterative solution to the PnP problem applicable for all n > 4
@ handles both planar and non-planar configurations

@ n 3D points coordinates expressed as a weighted sum of four
virtual control points

@ pose problem : estimation of the coordinates of control points in
Fe

@ To improve accuracy: the output of the closed-form solution can
be used to initialize a Gauss-Newton scheme that will choose the
values 3; that minimize the change in distance between control
points
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Outline

© Some pose estimation
algorithms with a known 3D
model
e P3P
@ POS and POSIT [DD95]
@ EPnP algorithm [LFNPO09]
@ Others EPnP algorithms
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Others EPnP algorithms

o It also exists iterative techniques as for ex. LHM [LHMOO]:
orthogonal iteration method to directly minimize the object
space error

@ A good review as speed and accuracy of 13 PnP methods can be

found in [ULH16]
= MLPnP has similar execution times compared to the fastest
methods (EPnP still faster) and is better in terms of accuracy.

@ Algorithms implementations can be found in OpenCV and
OpenGV [KLS14]
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Others EPnP algorithms

e EPnP[LFNPOQ9]: first accurate O(N) solution to the PnP

@ Other interesting O(n) solutions when the number of point
correspondences increases:

» OPnP [ZKS*13]: Optimal PnP — parameterize the rotation by
using non-unit quaternion and formulate the PnP problem into
an unconstrained optimization problem.

» GPnP [KFS13]: non-iterative n-point solution with linear
complexity in the number of points — Extension of EPnP to
Non-Perspective-n-Point problem (NPnP problem)

» UPnP [KLS14]: Universal PnP — applicable to both central and
non-central camera systems

» MLPnP [ULH16]: real-time Maximum Likelihood solution to
the Perspective-n-Point problem — statistically optimal solution
to PnP
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PnP calculation demo

@ Code from OpenCV real time pose estimation of a textured
object tutorial

@ Estimate the camera pose in order to track a textured object
with six degrees of freedom given a 2D image and its 3D
textured model

» Read 3D textured object model and object mesh

» Take input from Camera or Video

» Extract ORB features and descriptors from the scene
» Match scene descriptors with model descriptors

» Pose estimation using PnP 4 Ransac

» Linear Kalman Filter for bad poses rejection
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Outline Outline

@ Fundamental matrix

@ Homography

@ How to get correspondences
7

@ 3D reconstruction

© Transformation between

© Transformation between .
: images
images .
@ Epipolar geometry
@ Epipolar constraint
@ Essential Matrix

Pose estimation tutorial
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Outline

camera plane 1 camera plane 2

o’
e
optical center 2

© Transformation between
images
@ Epipolar geometry
@ Epipolar constraint

optical center 1

[From [Pri12]]
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The epipolar constraint

camera plane 1 camera plane 2

)
optical center 2

optical center 1

[From [Pri12]]
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The epipolar constrain;c(

/‘\

camera plane 1 camera plane 2

e epipolar line
pe
‘o
optical center 2

optical center 1

@ epipolar constraint: for any point in the first image, the
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corresponding point in the second image is constrained to lie on

a line
@ The epipolar line depends on the intrinsic and extrinsic
parameters of the cameras

[From [Pri12]]
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The epipolar constraint

camera plane 1 camera plane 2

3y,

‘o
optical center 2

optical center 1

[From [Pri12]]
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The epipolar constraint

Practical applications [Pril2]:
e Finding point correspondences (given intrinsic and extrinsic

95 / 181

parameters): for a point in the first image, perform a 1D search
along the epipolar line in the second image for the corresponding

position

@ Constraint on corresponding points is a function of the intrinsic

and extrinsic parameters

= Use the observed pattern of point correspondences to
determine the extrinsic parameters

= Get the geometric relationship between the two cameras

Pose estimation tutorial IPIN 2018
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The epipole

camera plane 2

Iz

camera plane 1

Iy

optical center 1

epipole el baseline

epipole e2

[From [Pri12]]
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Outline

© Transformation between
images
@ Epipolar geometry

@ Essential Matrix
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The epipolar plane

epipolar plane

\ camera plane 2

camera plane 1

Iy

/ optical center 2

optical center 1 . ! )
epipole el baseline epipole e2

[From [Sze10]]
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Normalized coordinates [HZ04]

Let's consider:

1
o Camera matrix P = K[R|t] and A%, = PX,, a point in the image

S X o . .
o X, = [ W] a point in the word in homogeneous coordinates

e K is known
We can get normalized coordinates:
o M\, = AK™1X; = \X; = [R|t]X,, (%; stills in homogeneous
coordinates)
@ equivalent to a camera where K =1
Normalized camera matrix: P’ = K71P = [R]t]
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Essential matrix [Pril2]

The geometric relationship between the two cameras is captured by
the essential matrix.

@ Assume normalized cameras, first camera at origin.

A& = [1]0]X,,
Ao%iz = [R[t] X,
@ 1™t camera: \iXj1 = Xu

e 2" camera: M\Xj» = RX,, +t

@ Substituting:
AoXiz = MRXjp +t
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Essential matrix [Pril2]

Xiat x RXy =0

@ The cross product term can be expressed as a matrix:

0 -t ¢
t, = t, 0 -t
-t t 0
@ Defining the essential matrix:
E — t>< R

@ and the essential matrix relation:
Xid Exjp =0
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Essential matrix [Pril2]

@ Constraint between the possible positions of corresponding
points in the two images

AoXio = MRX;1 + t
@ take cross product with t:
Mot X X = At X RXj;
@ take inner product with X;,:

)/(\,';-t X R)/E,']_ =0

Pose estimation tutorial IPIN 2018
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Properties of the essential matrix [Pril2]

@ Rank 2: det[E] =0
e 5 D.o.F.
@ Non-linear constraint between elements:

2EE"E — trace[EE"|E =0

Pose estimation tutorial IPIN 2018
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Computing the essential matrix

@ 5-point algorithm [Nis04]
@ 8-point algorithm [Lh81]

> XidEX;1 = 0

» can be solved with SVD
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Recovering epipolar lines [Pri12]

@ Equation of aline: IXx=10
@ Now consider:
)/(\,';—E)/E,'l - 0
e This as the form A% = 0 where /; = ;1 E
@ So the epipolar lines can be expressed as:

h=x%1E

b =%i{E
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Recovering epipolar lines [Pri12]

@ Equation of a line:
ax+by+c=0

X
[a b c]|y|=0
1

IXx=0
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Recovering epipoles [Pri12]

@ Every epipolar line in image 1 passes through the epipole e
= X, E& =0

for all X,

@ This can only be true if & is in the nullspace of E:
é = null[E]

e Similarly:
& = null[ET]

We find the null spaces by computing the SVD of E:

E=UDV'

and taking &; the last column of V and & the last row of U
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Retrieving R, t from E [Pril2]

Relative orientation problem: recover R, t from E
@ Essential matrix

E=t,R

@ To recover R, t use the matrix
0 -1 0
W=1{1 0 0
0 0 1

e With E= UDVT we get:

t, = UDWUT
R=uw1tvT

(details in [HZ04])
@ Need 2 corresponding points to solve ambiguities and have R
and t where points are in front of both cameras
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Fundamental Matrix [Pril2]

@ Lets consider two normal (not normalized) cameras:
A% = Kq[1|0]X,,
Ao%e = Ko[R[t]X,,

@ Using a similar procedure we can get the relation:

%1 Ky TEK %, =0

%] F%; =0

@ with:

F=K, "EK;' = K; "t RK !
@ Relation between essential and fundamental matrix:

E = K/FK;
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Outline

@ Fundamental matrix

© Transformation between
images
@ Epipolar geometry
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Estimate the fundamental matrix [Pril2]

@ When the fundamental matrix is correct with i,ZFi,-l =0, the
epipolar line induced by a point in the first image should pass
through the matching point in the second image and vice-versa

@ Constraint parameterized by the nine entries of F

@ Criterion: minimize the squared distance between every point
and the epipolar line predicted by its match in the other image
(I corresponding points):

I
F = arg min Z ((dist[x,-l, I1])? + (dist[x;2, l,-2])2)
F i—1
o dist[x, /] = ZZ2EE with | = [a, b, c] and x = [x,y]"

No closed form solution
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Estimate the fundamental matrix: the eight-point
algorithm [Pri12]

@ Approach

» solve for fundamental matrix using homogeneous coordinates

» closed form solution (but don't minimize a geometric error but
an algebraic error)

» solution usually very close to the values that optimize the
previous cost function

@ In homogeneous coordinates:

fu f2 fs| [xa
% F% =0= [x2 yo 1] |f1 f fhs| |ya| =0
fin f f3] |1
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Estimate the fundamental matrix: the eight-point
algorithm [Pri12]

@ This procedure does not ensure that solution is rank 2.
Solution: set last singular value to zero.

@ Can be unreliable because of numerical problems to do with the
data scaling — better to re-scale the data first

@ Needs 8 points in general positions (cannot all be planar).
o Fails if there is not sufficient translation between the views
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Estimate the fundamental matrix: the eight-point
algorithm [Pril12]

@ Can be expressed as: Af = 0 with
f = [f1, fiz, 13, For, Fo2, a3, F31, f32, f33] T and A contains the
combination of at least 8 pairs of points coordinates

e Find minimum of |Af|? subject to |f| =1

@ Solution can be found by SVD of A: A= UDV', setting f to
the last column of V

@ Reform F form f
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Outline

@ Homography estimation
@ From homography to pose
computation
@ How to get correspondences
?
@ 3D reconstruction

© Transformation between
images
@ Epipolar geometry
@ Homography

@ Definition and properties
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Outline

© Transformation between
images

@ Homography

@ Definition and properties
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Homography : definition and properties

@ Homography mapping X; and X, linear in homogeneous
coordinates

X1 hii b2 his X2
AMyi| = [har hn hs| [y
1 hsi h hss| |1

@ images seen by different cameras with the pinhole in the same
place are related by homographies

@ special case pure rotation: If the camera rotates but does not
translate, the tomography mapping image 1 to image 2 is

written:
H = KRK!

with K intrinsic matrix and R rotation between the two camera
positions
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Homography: definition and properties

plane

camera plane 1 camera plane 2

optical center 1 .
P optical center 2

[From [Pri12]]
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Homography : definition and properties

Homography maps between [Pri12]:
@ points on a plane in the world and their positions in an image,
@ points in two different images of the same plane

@ two images of a 3D object where the camera has rotated but not
translated

In the planar case, we can chain the homographies between
consecutive frames.
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Outline

@ Homography estimation

© Transformation between
images

@ Homography
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Outline

@ From homography to pose
computation

© Transformation between
images

© Homography
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Homography estimation [HZ04]

Objective:
Given n > 4 2D to 2D point correspondences x’; <+ x;, determine
the 2D homography matrix H such as x’; = Hx;
Algorithm
@ Normalization of x;: X; = Tx;
@ Normalization of x';: x/; = TX/
© DLT:
@ For each correspondence f’,- <> X; compute the matrix A;.
@ Form the 2n x 9 matrix A
© Write h for the vector containing the entries of the matrix H. A
solution of Ah = 0, subject to ||h|| = 1, is obtained from the
unit singular vector of A corresponding to the smallest singular
value.
© The matrix H is determined from h

© Denormalization: Set H = THT

Myriam Serviéres (ECN - AAU/CRENAU ) Pose estimation tutorial IPIN 2018 121 / 181

From homography to pose computation

@ All points are in the same plane, then fix z, = 0
@ = each 3D point coordinate is given by X,, =

@ Their projections in the image plane are given by

Xw

Xw Xw
Xe = NOIRIE] | 5’| = DI0)rrat] |y | = H |y
1 1 1

with r; the i*" column of R
@ H can be computed using DLT
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From homography to pose computation Outline

@ Feature point matching
principle and properties
@ Corner detector

o SIFT
@ Knowing H, R, t can be computed noting: @ Feature detectors
@ Outliers removal
[nrt] = [110] 'H @ 3D reconstruction

@ R is orthogonal then : 3 =1r X n e Transformation between

images

@ Epipolar geometry

@ Homography

@ How to get correspondences
2
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Qutline Feature point matching principle

@ Feature point matching e Finding corresponding points (2D point in the image and a 3D
principle and properties reference or between two 2D images)

@ Common framework:

» keypoints extraction: subset of pixels (" cornerness”)
» description: conversion into a descriptor
» matching between descriptors

@ Common process:

© Transformation between » off-line :

images * keypoir_1t descriptors computed off-line on a reference model
* key-point storage
» on-line:
* extract keypoint from each image
* match in the descriptor space with those in the database

* from correspondences, compute camera pose

@ How to get correspondences
?
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Feature points detectors properties Outline

Repeatability

@ Corner detector
Invariance

(*]

(]

@ Robustness
e Distinctiveness/informativeness
(]

Locality
e Quantity 9 Transformation between
@ Accuracy 'Mages
o Efficiency
@ How to get correspondences
7
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Corner detector Corner detector

E [ ing Tal ies:
@ Moravec [Mor80], Harris corner-detector [HS88], Shi-Tomasi ¢ xpansion using Talor series

[STO2] E(u,v) = Z w(x, y)[1(x,y) + ul + vl, — 1(x,y)]?
@ Harris corner-detector: Studies the average variation in intensity X,y
for a small movement ~ Z w(x, y)[IZ + 2uvi ], + v2/f]
E(u.v) = Y wlxo)ll(x+ .y +v) = I(x.y)P
X,y with I, gradient along x, /, gradient along y

@ in matrix form

v

E: the difference between the original and the moved window.

2
» u,v: window's displacement in the x (resp. y) direction E(u,v) ~ [u v} (Z w(x, y) [ I3 &éy}) [u}
» w(x,y): window function bty 1 v
» [: image intensity at a position (x, y) - u
» I(x,y): original intensity ~ [u V] M

v

I(x + u,y 4+ v) : shifted intensity

@ M: symmetric, define, positive = eigenvalues decomposition
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Corner detector

@ A score, R, is calculated for each window:
R = det(M) — k(trace(M))?

with det(M) = A1\, and trace(M) = A1 + X2
@ R values are > 0 around a corner, < 0 around an edge and small
in a constant region

Note: Shi-Tomasi detector has improved Harris detector
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SIFT [Low04]

e SIFT: Distinctive image features from scale invariant keypoint
(1999) [Low04]

@ has been considered a breakthrough for 2D points matching
@ Robust to

» Scale

» Rotation
lllumination
Viewpoint

v

v

Myriam Servieres (ECN - AAU/CRENAU ) Pose estimation tutorial IPIN 2018 134 / 181

Outline

@ SIFT

© Transformation between
images

@ How to get correspondences
?
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SIFT [LowO04] algorithm principle

@ Constructing a scale space

@ Laplacian of Gaussian (LoG) approximation using Difference of
Gaussian (DoG)

© Finding keypoints
© Get rid of bad key points (edges and low contrast regions)

© Assigning an orientation to the keypoints (cancels out the effect
of orientation)

@ Generate SIFT features
A detailed explanation can be found in [ROD14].
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Outline

@ Feature detectors

© Transformation between
images

@ How to get correspondences
?
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Outline

@ Outliers removal

© Transformation between
images

@ How to get correspondences
?
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Feature detectors

o FAST [STO02]
SIFT [Low04]
SURF [BETV08]
ORB [RRKB11]
KAZE [ABD12]
CARD [ABD12]
BRIEF [CLOT12]
BRISK [LCS11]
FREAK [AOV12]
LDB [XK12]

Demo : Learning OpenCV3 example code
> https://github.com/oreillymedia/Learning-OpenCV-3_examples/blob/master/example_16-02.cpp
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Remove outliers

o Causes of outliers: image noise, occlusions, blur, changes in view
point or illumination (non accounted by the feature detector)

@ Use of RANSAC algorithm [FB81]

@ |Initial: let A be a set of NV feature correspondences

Q repeat

Randomly select a sample of s points from A

Fit a model to these points

Compute the distance of all other points to this model
Construct the inlier set (i.e. count the number of points whose
distance from the model < d)

Store these inliers

until maximum number of iterations reached

(1]
(2]
o
(]
(5]
(5]

© The set with the maximum number of inliers is chosen as a
solution to the problem
© Estimate the model using all the inliers
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Remove outliers Outline

@ The number of iterations N which ensures a probability p that @ Homography
at least one sample with only inliers is drawn is given by © How to get correspondences
?
log(1 — p) @ 3D reconstruction

~ log(1— (1- 1))

with
» v the probability that a correspondence is an outlier
» s the number of point from which the model can be instantiated

e Example: p=99%, s=5, v=50% = N=145

© Transformation between
images
@ Epipolar geometry
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3D reconstruction principle pipeline [Pri12] Outline

Compute image features @ Motion estimation
Compute feature descriptors

Find initial matches
Compute fundamental matrix
Refine matches

Estimate essential matrix

Decompose essential matrix (four possibles solutions)

00000000

Estimate 3D points.
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Outline

Myriam Serviéres (ECN - AAU/CRENAU )

Principle

camera plane 1

optical center 1

Myriam Serviéres (ECN - AAU/CRENAU )

@ Motion estimation
@ Principle
@ Motion from feature
correspondences

e SLAM

Pose estimation tutorial

camera plane 2

optical center 2

Pose estimation tutorial

Principle

Principle

Visual Odometry (VO) compute the camera path incrementally

riam Servieres (ECN - AAU/CRENAU )
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Pose estimation tutorial

Image sequence

s

Feature detection

<z

Feature
matching(tracking)

Motion estimation

2D-2D | 3D-3D | 3D-2D

Local optimization

| [From [SF11]]

Pose estimation tutorial



Problem formulation [SF11] Problem formulation [SF11]

@ Two camera position at adjacent timestamps k — 1 and k are

related by
- {ng_l tk,;i_l} VO tasks:
@ compute the relative transformations T, from the images /, and

@ To.,= Ty,... T, contents to all subsequent motions le_1
@ The set of camera poses Cy., = Cp, - - - , C, contains the @ concatenate the transformations to recover the full trajectory

transformation of the camera w.r.t. F,oat k=0 Co.p, of the camera
e C,=C, 1T, =GT,---T, @ optionally perform an iterative refinement over last m poses to

estimate local trajectory with more accuracy (bundle
I T Ty I adjustment)
Co C1 O Cro1 Cn
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Outline Outline
@ Principle
@ Motion from feature @ Motion from feature
correspondences correspondences
@ 2D-2D correspondences @ 2D-2D correspondences

@ 3D-3D correspondences
@ 3D-2D correspondences

e SLAM

@ Motion estimation @ Motion estimation
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2D-2D [SF11]

camera plane 2

camera plane 1

tical center 2

@ Both images features are specified in 2D
@ The minimal-case solution involve 5-point correspondences

@ The solution is found by determining the transformation that
minimizes the reprojection error of the triangulated points in
each image
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Algorithm: VO for 2D-2D correspondence [SF11]

Capture new frame /I,

Extract and match features between /,_; and [,
Compute essential matrix for image pair I,_; and /y
Decompose essential matrix into R, and t, and form T
Compute relative scale and rescale t, accordingly

Concatenate transformation by computing C, = C,_1 T

Repeat from 1

Myriam Servieres (ECN - AAU/CRENAU ) Pose estimation tutorial IPIN 2018 152 / 181

2D-2D relative scale [SF11]

@ Absolute scale of the translation cannot be computed from two
images

@ Triangulate 3D points position from 2D points pairs

@ From 3D points, the relative distances between any combination
of two 3-D points can be computed.

@ Scale can then be determined from the distance ratio r between
a point pair in Xi_; and a pair in Xy

. | Xk—1,i — Xk—1,]]
[ Xk,i = Xl

@ Mean scale ratio is used to scale t
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Outline

@ Motion from feature
correspondences

@ 3D-3D correspondences

@ Motion estimation
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3D-3D [SF11]

L —
Ty

@ Both image features are specified in 3D
@ The minimal-case solution involve 3 non-linear correspondences

@ The solution is found by determining the aligning transformation
that minimizes the 3D-3D distance
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Outline

@ Motion from feature
correspondences

@ 3D-2D correspondences

@ Motion estimation
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Algorithm: VO for 3D-3D correspondence [SF11]

© Capture two stereo image pairs /j x_1, lr k-1 and f x, I, «
@ Extract and match features between /; ,_1 and [ x

© Triangulate matched features for each stereo pair

@ Compute T, from 3-D features X,_; and Xj

© Concatenate transformation by computing C, = C,_1 Tk
@ Repeat from 1
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2D-3D [SF11]

Ty

@ Features at instant kK — 1 are in 3D and in 2D at k
@ PnP problem
@ The minimal-case solution involve 3 non-linear correspondences

@ The solution is found by determining the transformation that
minimizes the reprojection error
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Algorithm: VO for 2D-3D correspondence [SF11] VO trajectory estimation example

@ Do only once:

City 30 model

@ Capture two frames lx_o, Ix_1
@ Extract and match features between them
© Triangulate features from Iy o, Iy 1

@ Do at each iteration:

©® Capture new frame [

@ Extract features and match with previous frame /;_1

© Compute camera pose (PnP) from 3-D-to-2-D matches
O Triangulate all new feature matches between [ and /_1 work from [ASR18]
O lterate

55555

66885 668352 663854 668656 668855
Yiantes (M) 10f
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Outline Qutline
@ Motion estimation © Motion estimation
@ Principle
@ Motion from feature
correspondences
e SLAM e SLAM
@ VO vs. SLAM @ VO vs. SLAM

@ vSLAM and viSLAM
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VO vs. SLAM

@ SLAM: Simultaneous Localization And Mapping
» global consistent estimate of the localization (and mapping)
» use loop-closure to reduce the drift in the map and in the
localization of the camera (global bundle adjustment)
e VO
» incremental localization
» local consistent estimate of the trajectory
» potential windowed bundles adjustments

@ VO can be a part of SLAM (before closing the loop)
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vSLAM and viSLAM algorithms

@ Visual SLAM

> PTAM [KMO7]
ORB-SLAM [MAMT15]
DTAM [NLD11]
LSD-SLAM [ESC14]
DSO [EKC16]

v

v

v

v

>

@ Visual inertial SLAM

» MSCKF [MRO7]
ROVIO [BOHS15]
S-MSCKF [SMP+17]
VINS-Mono [QLS17]

v

v

v
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Outline

@ Motion estimation

e SLAM

@ vSLAM and viSLAM
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Outline

© Conclusion
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Conclusion

Conclusion
X, (North)
N )
X Qorth) Y, (East) “ i
Yearch \
Kearen Zn(Down) o

Images from [ASR17]
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e
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Conclusion

X (o)

Y, (Eas)
arth

ZyMown)

Conclusion

B

@ But... pose calculation is not very accurate in the presence of
fast rotation movements

@ ... fusion with IMMU can help!

Images from [ASR17]
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Links

@ Tools for Computer Vision
» OpenCV (Open source)

» OpenGV (Open source)
» ViSP (Open source)
» MATLAB Toolboxes
© Links and bibliography

o Websites

» https://fr.mathworks.com /solutions/image-video-processing.html
» Annotated Computer Vision Bibliography
» http://www.visionbib.com/bibliography/contents.html|
» Computer Vision conferences list
Pose estimation tutorial
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(very) Useful books and tutorials (very) Useful books and tutorials

e Multiple V_lew © Learning OP?'['CV, 3: e Computer Vision: e Computer Vision:
Gfa(.)metry in Computer Comput.er Vision in Models Learning and Algorithms and
Vision [HZO4] C.++ with the OpenCV Inference [Pri12] Applications [Szel0]
From RlChal’d Hartley, Library [KBN] From Simon J.D. Prince, From Richard Szeliski
Andrew Zisserman From Adrian Kaehler and
Gary Bradski

Multiple View
Geometry

in computervision

COMPUTER

[c]
Bls
= ‘Adrian Koeler & Gary Bradski
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(very) Useful books and tutorials

e E. Marchand, H. Uchiyama, F. Spindler " Pose estimation for
augmented reality : a hands-on survey”, IEEE Trans. Vis.
Comput. Graph., 2016. [MUS16]

> http://people.rennes.inria.fr/Eric.Marchand/pose-estimation /index.html SO now, if you know What you Iook at, y0u can te" me Where

@ D. Scaramuzza and F. Fraundorfer, " Visual Odometry: Part | - you are.
The First 30 Years and Fundamentals,” |[EEE Robot. Autom.
Mag., vol. 18, no. 4, pp. 80-92, Dec. 2011. [SF11]

e F. Fraundorfer and D. Scaramuzza, " Visual Odometry : Part Il
Matching, Robustness, Optimization, and Applications,” IEEE
Robot. Autom. Mag., vol. 19, no. 2, pp. 78-90, Jun. 2012.
[FS12]

> http://rpg.ifi.uzh.ch/visual_odometry_tutorial.html|

Myriam Serviéres (ECN - AAU/CRENAU ) Pose estimation tutorial IPIN 2018 172 / 181 Myriam Servieres (ECN - AAU/CRENAU ) Pose estimation tutorial IPIN 2018 173 / 181




References | References |

Pablo Fernandez Alcantarilla, Adrien Bartoli, and Andrew J. Davison. Daniel F. Dementhon and Larry S. Davis.
KAZE features. Model-based object pose in 25 lines of code.
Lecture Notes in Computer Science, 7577 LNCS(PART 6):214-227, 2012. International Journal of Computer Vision, 15(1-2):123-141, jun 1995.
Alexandre Alahi, Raphael Ortiz, and Pierre Vandergheynst. Jakob Engel, Vladlen Koltun, and Daniel Cremers.
FREAK: Fast Retina Keypoint. Direct sparse odometry.
2012 leee Conference on Computer Vision and Pattern Recognition (Cvpr), pages 510-517, 2012. CoRR, abs/1607.02565, 2016.
Nicolas Antigny, Myriam Servieres, and Valerie Renaudin. Jakob Engel, Thomas Schéps, and Daniel Cremers.
Pedestrian track estimation with handheld monocular camera and inertial-magnetic sensor for urban augmented reality. Lsd-slam: Large-scale direct monocular slam.
In 2017 International Conference on Indoor Positioning and Indoor Navigation (IPIN), pages 1-8, Sapporo, Japan, sep In David Fleet, Tomas Pajdla, Bernt Schiele, and Tinne Tuytelaars, editors, Computer Vision — ECCV 2014, pages
2017. IEEE. 834-849, Cham, 2014. Springer International Publishing.
Nicolas Antigny, Myriam Serviéres, and Valérie Renaudin. Martin a Fischler and Robert C Bolles.
Continuous Pose Estimation for Urban Pedestrian Applications on Hand-held Mobile Device. Random Sample Consensus: A Paradigm for Model Fitting with.
In IPIN, page to be published, 2018. Communications of the ACM, 24:381-395, 1981.
Herbert Bay, Andreas Ess, Tinne Tuytelaars, and Luc Van Gool. Friedrich Fraundorfer and Davide Scaramuzza.
Speeded-Up Robust Features (SURF). Visual Odometry : Part II: Matching, Robustness, Optimization, and Applications.
Computer Vision and Image Understanding, 110(3):346-359, 2008. IEEE Robotics & Automation Magazine, 19(2):78-90, jun 2012.
M. Bloesch, S. Omari, M. Hutter, and R. Siegwart. Xiao-Shan Gao, Xiao-Rong Hou, Jianliang Tang, and Hang-Fei Cheng.
Robust visual inertial odometry using a direct ekf-based approach. Complete solution classification for the P3P problem.
In 2015 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), pages 298-304, Sept 2015. IEEE Transactions on Pattern Analysis and Machine Intelligence, 25(8):930-943, 2003.
Michael Calonder, Vincent Lepetit, Mustafa OZuysaI, Tomasz Trzcinski, Christoph Strecha, and Pascal Fua. C Harris and M Stephens.
BRIEF: Computing a local binary descriptor very fast. A Combined Corner and Edge Detection.
IEEE Transactions on Pattern Analysis and Machine Intelligence, 34(7):1281-1298, 2012. In Proceedings of The Fourth Alvey Vision Conference, pages 147-151, 1988.

Myriam Serviéres (ECN - AAU/CRENAU ) Pose estimation tutorial Myriam Servieres (ECN - AAU/CRENAU ) Pose estimation tutorial

References 1l References |1V
H. C. Longuet-higgins.

Richard Hartley and Andrew Zisserman. A computer algorithm for reconstructing a scene from two projections.
Multiple view geometry in computer vision. Nature, 293(5828):133-135, 1981.
2004.
Chien Ping Lu, Gregory D. Hager, and Eric Mjolsness.
Adrian Kaehler and Gary Bradski. Fast and globally convergent pose estimation from video images.
Learning OpenCV 3: Computer Vision in C++ with the OpenCV Library. IEEE Transactions on Pattern Analysis and Machine Intelligence, 22(6):610-622, 2000.
O'Reilly Media, 2017.
David G Lowe.
Laurent Kneip, Paul Furgale, and Roland Siegwart. Perceptual Organization and Visual Recognition.
Using multi-camera systems in robotics: Efficient solutions to the NPnP problem. 1985.
Proceedings - IEEE International Conference on Robotics and Automation, (2004):3770-3776, 2013. David G. L
avi . Lowe.
Laurent Kneip, Hongdong Li, and Yongduek Seo. Fitting Parameterized Three-Dimensional Models to Images.
UPnP: An optimal O(n) solution to the absolute pose problem with universal applicability. IEEE Transactions on Pattern Analysis and Machine Intelligence, 13(5):441-450, 1991.
Lecture Notes in Computer Science, 8689 LNCS(PART 1):127-142, 2014. David G L
avi owe.
G. Klein and D. Murray. Distinctive image features from scale-invariant keypoints.
Parallel tracking and mapping for small ar workspaces. International journal of computer vision, 60.2:91-110, 2004.

In 2007 6th IEEE and ACM International Symposium on Mixed and Augmented Reality, pages 225-234, Nov 2007.

R. Mur-Artal, J. M. M. Montiel, and J. D. Tards.

Stefan Leutenegger, Margarita Chli, and Roland Y. Siegwart. Orb-slam: A versatile and accurate monocular slam system.
BRISK: Binary Robust invariant scalable keypoints. IEEE Transactions on Robotics, 31(5):1147-1163, Oct 2015.

In 2011 International Conference on Computer Vision, pages 2548-2555. |EEE, nov 2011.

Philippe Martinet.
V. Lepetit, F.Moreno-Noguer, and P.Fua. Computer Vision - Visual Geometry, EMARO Erasmus Mundus Master, 2013.

Epnp: An accurate o(n) solution to the pnp problem.
International Journal Computer Vision, 81(2), 2009.

Hans Peter Moravec.

Obstacle avoidance and navigation in the real world by a seeing robot rover.
tech. report CMU-RI-TR-80-03, page 175, 1980.

Myriam Serviéres (ECN - AAU/CRENAU ) Pose estimation tutorial Myriam Servieres (ECN - AAU/CRENAU ) Pose estimation tutorial



References V

A. I. Mourikis and S. |. Roumeliotis.

A multi-state constraint kalman filter for vision-aided inertial navigation.
In Proceedings 2007 IEEE International Conference on Robotics and Automation, pages 3565-3572, April 2007.

Eric Marchand, Hideaki Uchiyama, and Fabie Spindler.
Pose estimation for augmented reality : a hands-on survey.
IEEE transactions on visualization and computer graphics, 2016.

D. Nister.

An efficient solution to the five-point relative pose problem.
IEEE Transactions on Pattern Analysis and Machine Intelligence, 26(6):756—770, jun 2004.

Richard A. Newcombe, Steven Lovegrove, and Andrew J. Davison.
Dtam: Dense tracking and mapping in real-time.
2011 International Conference on Computer Vision, pages 2320-2327, 2011.

Denis Oberkampf, Daniel F. DeMenthon, and Larry S. Davis.

Iterative Pose Estimation Using Coplanar Feature Points.
Computer Vision and Image Understanding, 63(3):495-511, 1996.

S.J.D. Prince.
Computer Vision: Models Learning and Inference.
Cambridge University Press, 2012.

Tong Qin, Peiliang Li, and Shaojie Shen.

Vins-mono: A robust and versatile monocular visual-inertial state estimator.
CoRR, abs/1708.03852, 2017.

Myriam Servieres (ECN - AAU/CRENAU ) Pose estimation tutorial

References VI

Lawrence Gllman Roberts.

Machine perception of three-dimensional solids.
PhD thesis, 1963.

lves Rey-Otero and Mauricio Delbracio.

Anatomy of the SIFT Method.
Image Processing On Line, 4:370-396, 2014.

Ethan Rublee, Vincent Rabaud, Kurt Konolige, and Gary Bradski.

ORB: An efficient alternative to SIFT or SURF.
In 2011 International Conference on Computer Vision, pages 2564-2571. IEEE, nov 2011.

Davide Scaramuzza and Friedrich Fraundorfer.

Visual Odometry: Part | - The First 30 Years and Fundamentals.
IEEE Robotics & Automation Magazine, 18(4):80-92, dec 2011.

Johannes Lutz Schonberger and Jan-Michael Frahm.

Structure-from-motion revisited.
In Conference on Computer Vision and Pattern Recognition (CVPR), 2016.

P.F. Sturm and S.J. Maybank.

On plane-based camera calibration: A general algorithm, singularities, applications.

In Proceedings. 1999 IEEE Computer Society Conference on Computer Vision and Pattern Recognition (Cat. No
PR00149), pages 432-437. IEEE Comput. Soc, 1999.

Ke Sun, Kartik Mohta, Bernd Pfrommer, Michael Watterson, Sikang Liu, Yash Mulgaonkar, Camillo J. Taylor, and Vijay

Kumar.
Robust stereo visual inertial odometry for fast autonomous flight.
CoRR, abs/1712.00036, 2017.

Myriam Servieres (ECN - AAU/CRENAU ) Pose estimation tutorial

References VII

Jianbo Shi and Carlo Tomasi.

Good features to track.
In Computer Vision and Pattern Recognition, 1994. Proceedings CVPR'94., 1994 IEEE Computer Society Conference
on, volume 54, page 258. |IEEE, 2002.

Richard Szeliski.

Computer Vision: Algorithms and Applications.

2010.

Johannes Lutz Schonberger, Enliang Zheng, Marc Pollefeys, and Jan-Michael Frahm.

Pixelwise view selection for unstructured multi-view stereo.
In European Conference on Computer Vision (ECCV), 2016.

Roger Y. Tsai.

A Versatile Camera Calibration Technique for High-Accuracy 3D Machine Vision Metrology Using Off-the-Shelf TV
Cameras and Lenses.
IEEE Journal on Robotics and Automation, 3(4):323-344, 1987.

S. Urban, J. Leitloff, and S. Hinz.
MLPNP - A real-time maximum likelihood solution to the perspective-n-point problem.
ISPRS Annals of the Photogrammetry, Remote Sensing and Spatial Information Sciences, |11-3:131-138, 2016.

Xin Yang and Kwang-Ting Cheng.

LDB: An ultra-fast feature for scalable Augmented Reality on mobile devices.
In 2012 IEEE International Symposium on Mixed and Augmented Reality (ISMAR), volume 2, pages 49-57. IEEE, nov
2012.

Joseph S.C. Yuan.

A General Photogrammetric Method for Determining Object Position and Orientation.
IEEE Transactions on Robotics and Automation, 5(2):129-142, 1989.

Myriam Serviéres (ECN - AAU/CRENAU ) Pose estimation tutorial

References VIII

Z Zhang.

A flexible new technique for camera calibration.
IEEE Transactions on Pattern Analysis and Machine Intelligence, 22(11):1330-1334, 2000.

Yingiang Zheng, Yubin Kuang, Shigeki Sugimoto, Kalle Astrom, and Masatoshi Okutomi.
Revisiting the PnP problem: A fast, general and optimal solution.
Proceedings of the IEEE International Conference on Computer Vision, pages 2344-2351, 2013.

Myriam Servieres (ECN - AAU/CRENAU ) Pose estimation tutorial



